CyberSecAI / app.py
invincible-jha's picture
Upload app.py
4c6dd82 verified
raw
history blame
4.67 kB
import gradio as gr
from transformers import pipeline
import requests
import json
import time
import threading
# Load AI models
def load_models():
models = {}
try:
# Text generation model (using smaller open source alternative)
models["gpt2"] = pipeline("text-generation", model="gpt2")
# Classification models
models["bert-base"] = pipeline("text-classification", model="bert-base-uncased")
models["distilbert"] = pipeline("text-classification", model="distilbert-base-uncased")
# Cybersecurity specific models
models["phishing-bert"] = pipeline(
"text-classification",
model="deepset/bert-base-cased-squad2" # Using a QA model that can be fine-tuned for security
)
except Exception as e:
print(f"Error loading models: {str(e)}")
# Fallback to at least one working model
models["distilbert"] = pipeline("text-classification", model="distilbert-base-uncased")
return models
# Define functions to interact with AI models
def analyze_text(text, model_name):
if not text.strip():
return "Please provide some text to analyze."
model = models.get(model_name)
if not model:
return f"Model {model_name} not found. Available models: {', '.join(models.keys())}"
try:
if model_name == "gpt2":
result = model(text, max_length=100, num_return_sequences=1)
return result[0]['generated_text']
else:
result = model(text)
return str(result)
except Exception as e:
return f"Error analyzing text: {str(e)}"
def analyze_file(file, model_name):
try:
content = file.read().decode("utf-8")
return analyze_text(content, model_name)
except Exception as e:
return f"Error processing file: {str(e)}"
# Real-time monitoring and alerting
alert_thresholds = {
"phishing": 0.8,
"malware": 0.8,
"anomaly": 0.8
}
def monitor_real_time_data(data_stream, model_name):
if not data_stream.strip():
return "Please provide a data stream URL or content."
try:
# For demo purposes, we'll analyze the provided text as a single data point
result = analyze_text(data_stream, model_name)
return f"Monitoring result: {result}"
except Exception as e:
return f"Error monitoring data: {str(e)}"
# Load models at startup
models = load_models()
# Gradio interface
def create_gradio_interface():
with gr.Blocks() as demo:
gr.Markdown("# Cybersecurity AI Platform")
with gr.Tab("Text Analysis"):
text_input = gr.Textbox(
label="Enter text for analysis",
placeholder="Enter text here..."
)
model_dropdown = gr.Dropdown(
choices=list(models.keys()),
value=list(models.keys())[0],
label="Select AI Model"
)
text_output = gr.Textbox(label="Analysis Result")
text_button = gr.Button("Analyze Text")
text_button.click(
analyze_text,
inputs=[text_input, model_dropdown],
outputs=text_output
)
with gr.Tab("File Analysis"):
file_input = gr.File(label="Upload file for analysis")
file_model_dropdown = gr.Dropdown(
choices=list(models.keys()),
value=list(models.keys())[0],
label="Select AI Model"
)
file_output = gr.Textbox(label="Analysis Result")
file_button = gr.Button("Analyze File")
file_button.click(
analyze_file,
inputs=[file_input, file_model_dropdown],
outputs=file_output
)
with gr.Tab("Real-time Monitoring"):
stream_input = gr.Textbox(
label="Enter data stream content",
placeholder="Enter data to monitor..."
)
stream_model_dropdown = gr.Dropdown(
choices=list(models.keys()),
value=list(models.keys())[0],
label="Select AI Model"
)
stream_output = gr.Textbox(label="Monitoring Result")
stream_button = gr.Button("Start Monitoring")
stream_button.click(
monitor_real_time_data,
inputs=[stream_input, stream_model_dropdown],
outputs=stream_output
)
return demo
if __name__ == "__main__":
demo = create_gradio_interface()
demo.launch()