import gradio as gr from transformers import pipeline import requests import json import time import threading # Load AI models def load_models(): models = { "gpt-3": pipeline("text-generation", model="gpt-3"), "bert-base-uncased": pipeline("text-classification", model="bert-base-uncased"), "roberta-large": pipeline("text-classification", model="roberta-large"), "distilbert-base-uncased": pipeline("text-classification", model="distilbert-base-uncased"), "albert-base-v2": pipeline("text-classification", model="albert-base-v2"), "tinybert": pipeline("text-classification", model="tinybert"), "cybersecurity-bert": pipeline("text-classification", model="cybersecurity-bert"), "malware-detection-bert": pipeline("text-classification", model="malware-detection-bert"), "phishing-detection-bert": pipeline("text-classification", model="phishing-detection-bert") } return models models = load_models() # Define functions to interact with AI models def analyze_text(text, model_name): model = models.get(model_name) if model: return model(text) else: return "Model not found." def analyze_file(file, model_name): content = file.read().decode("utf-8") return analyze_text(content, model_name) # Real-time monitoring and alerting alert_thresholds = { "phishing": 0.8, "malware": 0.8, "anomaly": 0.8 } def monitor_real_time_data(data_stream, model_name): for data in data_stream: result = analyze_text(data, model_name) if result["score"] >= alert_thresholds.get(model_name, 0.8): send_alert(result) def send_alert(alert): # Implement notification methods (e.g., email, SMS, in-app notifications) print(f"Alert: {alert}") # Gradio interface def gradio_interface(): with gr.Blocks() as demo: gr.Markdown("# Cybersecurity AI Platform") with gr.Tab("Text Input"): text_input = gr.Textbox(label="Enter text for analysis") model_dropdown = gr.Dropdown(choices=list(models.keys()), label="Select AI Model") text_output = gr.Textbox(label="Analysis Result") text_button = gr.Button("Analyze Text") text_button.click(analyze_text, inputs=[text_input, model_dropdown], outputs=text_output) with gr.Tab("File Upload"): file_input = gr.File(label="Upload file for analysis") model_dropdown = gr.Dropdown(choices=list(models.keys()), label="Select AI Model") file_output = gr.Textbox(label="Analysis Result") file_button = gr.Button("Analyze File") file_button.click(analyze_file, inputs=[file_input, model_dropdown], outputs=file_output) with gr.Tab("Real-time Data Stream"): data_stream_input = gr.Textbox(label="Enter real-time data stream URL") model_dropdown = gr.Dropdown(choices=list(models.keys()), label="Select AI Model") real_time_output = gr.Textbox(label="Real-time Monitoring Result") real_time_button = gr.Button("Start Monitoring") real_time_button.click(monitor_real_time_data, inputs=[data_stream_input, model_dropdown], outputs=real_time_output) demo.launch() if __name__ == "__main__": gradio_interface()