invincible-jha commited on
Commit
122d335
Β·
verified Β·
1 Parent(s): f56fd16

Upload readme.md

Browse files
Files changed (1) hide show
  1. readme.md +135 -0
readme.md ADDED
@@ -0,0 +1,135 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ title: Vocal Emotion Recognition
3
+ emoji: 🎀
4
+ colorFrom: blue
5
+ colorTo: purple
6
+ sdk: gradio
7
+ sdk_version: 3.50.2
8
+ app_file: app.py
9
+ pinned: false
10
+ ---
11
+
12
+ # Vocal Emotion Recognition System
13
+
14
+ ## 🎯 Project Overview
15
+
16
+ A deep learning-based system for real-time emotion recognition from vocal input using state-of-the-art audio processing and transformer models.
17
+
18
+ ### Key Features
19
+ - Real-time vocal emotion analysis
20
+ - Advanced audio feature extraction
21
+ - Pre-trained transformer model integration
22
+ - User-friendly web interface
23
+ - Comprehensive evaluation metrics
24
+
25
+ ## πŸ› οΈ Technical Architecture
26
+
27
+ ### Components
28
+ 1. **Audio Processing Pipeline**
29
+ - Sample rate standardization (16kHz)
30
+ - Noise reduction and normalization
31
+ - Feature extraction (MFCC, Chroma, Mel spectrograms)
32
+
33
+ 2. **Machine Learning Pipeline**
34
+ - DistilBERT-based emotion classification
35
+ - Transfer learning capabilities
36
+ - Comprehensive evaluation metrics
37
+
38
+ 3. **Web Interface**
39
+ - Gradio-based interactive UI
40
+ - Real-time processing
41
+ - Intuitive result visualization
42
+
43
+ ## πŸ“¦ Installation
44
+
45
+ 1. **Clone the Repository**
46
+ ```bash
47
+ git clone [repository-url]
48
+ cd vocal-emotion-recognition
49
+ ```
50
+
51
+ 2. **Install Dependencies**
52
+ ```bash
53
+ pip install -r requirements.txt
54
+ ```
55
+
56
+ 3. **Environment Setup**
57
+ - Python 3.8+ required
58
+ - CUDA-compatible GPU recommended for training
59
+ - Microphone access required for real-time analysis
60
+
61
+ ## πŸš€ Usage
62
+
63
+ ### Starting the Application
64
+ ```bash
65
+ python app.py
66
+ ```
67
+ - Access the web interface at `http://localhost:7860`
68
+ - Use microphone input for real-time analysis
69
+ - View emotion classification results instantly
70
+
71
+ ### Training Custom Models
72
+ ```bash
73
+ python model_training.py --data_path [path] --epochs [num]
74
+ ```
75
+
76
+ ## πŸ“Š Model Performance
77
+
78
+ The system utilizes various metrics for evaluation:
79
+ - Accuracy, Precision, Recall, F1 Score
80
+ - ROC-AUC Score
81
+ - Confusion Matrix
82
+ - MAE and RMSE
83
+
84
+ ## πŸ”§ Configuration
85
+
86
+ ### Model Settings
87
+ - Base model: `bhadresh-savani/distilbert-base-uncased-emotion`
88
+ - Audio sample rate: 16kHz
89
+ - Batch size: 8 (configurable)
90
+ - Learning rate: 5e-5
91
+
92
+ ### Feature Extraction
93
+ - MFCC: 13 coefficients
94
+ - Chroma features
95
+ - Mel spectrograms
96
+ - Spectral contrast
97
+ - Tonnetz features
98
+
99
+ ## πŸ“ API Reference
100
+
101
+ ### Audio Processing
102
+ ```python
103
+ preprocess_audio(audio_file)
104
+ extract_features(audio_data)
105
+ ```
106
+
107
+ ### Model Interface
108
+ ```python
109
+ analyze_emotion(audio_input)
110
+ train_model(data_path, epochs)
111
+ ```
112
+
113
+ ## 🀝 Contributing
114
+
115
+ 1. Fork the repository
116
+ 2. Create a feature branch
117
+ 3. Commit changes
118
+ 4. Push to the branch
119
+ 5. Open a pull request
120
+
121
+ ## πŸ“„ License
122
+
123
+ This project is licensed under the MIT License - see the LICENSE file for details.
124
+
125
+ ## πŸ™ Acknowledgments
126
+
127
+ - HuggingFace Transformers
128
+ - Librosa Audio Processing
129
+ - Gradio Interface Library
130
+
131
+ ## πŸ“ž Contact
132
+
133
+ For questions and support, please open an issue in the repository.
134
+
135
+ Check out the configuration reference at https://huggingface.co/docs/hub/spaces-config-reference