File size: 10,720 Bytes
6e790f0
 
76166e3
5a6069c
d6fdb88
5a6069c
 
6f0fdff
76166e3
d28913a
 
 
 
 
76166e3
5a6069c
76166e3
5a6069c
 
 
6e790f0
d28913a
 
 
6e790f0
d6fdb88
 
 
6f0fdff
 
d6fdb88
d28913a
76166e3
 
d6fdb88
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6f0fdff
 
 
d6fdb88
6f0fdff
d6fdb88
 
6f0fdff
d6fdb88
6f0fdff
d6fdb88
 
76166e3
5a6069c
 
 
 
6e790f0
 
 
 
 
 
 
 
 
 
 
 
8e60da3
 
 
 
 
 
 
271a1f5
6e790f0
 
8e60da3
 
 
 
 
 
 
6e790f0
 
 
 
 
 
 
8e60da3
 
 
 
 
 
6e790f0
 
8e60da3
 
 
 
6e790f0
 
8e60da3
 
 
 
 
6e790f0
 
8e60da3
 
6e790f0
 
 
 
 
 
 
 
 
 
 
8e60da3
 
 
 
 
 
 
 
 
 
6e790f0
 
d28913a
6e790f0
 
8e60da3
 
 
 
 
6e790f0
 
8e60da3
 
 
 
 
6e790f0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d28913a
6e790f0
8e60da3
 
5a6069c
 
 
 
 
 
 
 
 
6e790f0
d28913a
6e790f0
5a6069c
 
 
 
 
 
 
 
 
 
 
 
 
 
6f0fdff
 
 
 
 
 
 
d6fdb88
6f0fdff
 
 
 
5a6069c
271a1f5
8e60da3
271a1f5
6f0fdff
 
 
 
 
 
 
 
5a6069c
6e790f0
5a6069c
 
 
8e60da3
271a1f5
 
 
 
6e790f0
5a6069c
 
 
 
8e60da3
76166e3
5a6069c
 
 
76166e3
6f0fdff
 
 
 
 
 
271a1f5
 
6f0fdff
 
 
 
 
271a1f5
76166e3
 
5a6069c
 
6e790f0
 
 
 
 
 
76166e3
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
import os
import torch
import gradio as gr
import logging
from transformers import pipeline, AutoTokenizer, AutoModelForCausalLM
from utils.log_manager import LogManager
from utils.analytics_logger import AnalyticsLogger
from agents.orchestrator import WellnessOrchestrator

# Force CPU-only mode
torch.cuda.is_available = lambda: False
if hasattr(torch, 'set_default_tensor_type'):
    torch.set_default_tensor_type('torch.FloatTensor')

class WellnessInterface:
    def __init__(self, config):
        self.config = config
        self.log_manager = LogManager()
        self.logger = self.log_manager.get_agent_logger("interface")
        self.analytics = AnalyticsLogger()
        
        # Ensure CPU-only operation
        self.device = "cpu"
        self.logger.info("Using CPU-only mode")
        
        # Initialize models
        self.initialize_models()
        
        # Initialize orchestrator
        self.initialize_orchestrator()
        
        # Initialize interface
        self.setup_interface()
        
    def initialize_models(self):
        """Initialize AI models"""
        self.logger.info("Initializing AI models")
        try:
            # Initialize emotion detection model
            self.emotion_model = pipeline(
                "text-classification",
                model=self.config["MODEL_CONFIGS"]["emotion_detection"]["model_id"],
                device=self.device
            )
            
            # Initialize conversation model
            self.conversation_tokenizer = AutoTokenizer.from_pretrained(
                self.config["MODEL_CONFIGS"]["conversation"]["model_id"]
            )
            self.conversation_model = AutoModelForCausalLM.from_pretrained(
                self.config["MODEL_CONFIGS"]["conversation"]["model_id"],
                device_map={"": self.device}
            )
            
            self.logger.info("AI models initialized successfully")
            
        except Exception as e:
            self.logger.error(f"Error initializing models: {str(e)}")
            raise
            
    def initialize_orchestrator(self):
        """Initialize CrewAI orchestrator"""
        self.logger.info("Initializing CrewAI orchestrator")
        try:
            self.orchestrator = WellnessOrchestrator(
                model_config=self.config["MODEL_CONFIGS"]
            )
            self.logger.info("Orchestrator initialized successfully")
        except Exception as e:
            self.logger.error(f"Error initializing orchestrator: {str(e)}")
            raise
            
    def setup_interface(self):
        """Setup the Gradio interface components"""
        self.logger.info("Setting up interface components")
        
        try:
            with gr.Blocks(
                theme=gr.themes.Soft(),
                css=".gradio-container {background-color: #f7f7f7}"
            ) as self.interface:
                gr.Markdown(
                    "# 🧠 Mental Wellness Support",
                    elem_classes="text-center"
                )
                gr.Markdown(
                    "A safe space for mental health support and guidance.",
                    elem_classes="text-center"
                )
                
                with gr.Row():
                    with gr.Column(scale=3):
                        self.chatbot = gr.Chatbot(
                            label="Mental Wellness Assistant",
                            height=400,
                            value=[],
                            type="messages",
                            elem_id="wellness_chat",
                            avatar_images=["πŸ‘€", "πŸ€–"]
                        )
                        
                        with gr.Row():
                            self.text_input = gr.Textbox(
                                label="Type your message",
                                placeholder="Enter your message here...",
                                lines=2,
                                scale=4,
                                container=False
                            )
                            self.submit_btn = gr.Button(
                                "Send",
                                scale=1,
                                variant="primary"
                            )
                            
                        with gr.Row():
                            self.audio_input = gr.Audio(
                                label="Voice Input",
                                type="filepath",
                                format="wav",
                                scale=1
                            )
                            
                            self.image_input = gr.Image(
                                label="Image Upload",
                                type="filepath",
                                scale=1
                            )
                            
                    with gr.Column(scale=1):
                        with gr.Group():
                            gr.Markdown("### Quick Actions")
                            self.clear_btn = gr.Button(
                                "πŸ—‘οΈ Clear Chat",
                                variant="secondary"
                            )
                            self.emergency_btn = gr.Button(
                                "🚨 Emergency Help",
                                variant="stop"
                            )
                            
                            gr.Markdown("### Resources")
                            gr.Markdown("""
                            - πŸ“ž Crisis Hotline: 988
                            - πŸ’­ Text HOME to 741741
                            - πŸ₯ Emergency: 911
                            """)
                
                # Event handlers
                self.submit_btn.click(
                    fn=self.process_input,
                    inputs=[
                        self.text_input,
                        self.audio_input,
                        self.image_input,
                        self.chatbot
                    ],
                    outputs=[
                        self.chatbot,
                        self.text_input
                    ],
                    api_name="chat"
                )
                
                self.clear_btn.click(
                    fn=self.clear_chat,
                    inputs=[],
                    outputs=[self.chatbot],
                    api_name="clear"
                )
                
                self.emergency_btn.click(
                    fn=self.emergency_help,
                    inputs=[],
                    outputs=[self.chatbot],
                    api_name="emergency"
                )
                
                # Add keyboard shortcuts
                self.text_input.submit(
                    fn=self.process_input,
                    inputs=[
                        self.text_input,
                        self.audio_input,
                        self.image_input,
                        self.chatbot
                    ],
                    outputs=[
                        self.chatbot,
                        self.text_input
                    ]
                )
                
            self.logger.info("Interface setup completed successfully")
            
        except Exception as e:
            self.logger.error(f"Error setting up interface: {str(e)}")
            raise
            
    def process_input(self, text, audio, image, history):
        """Process user input from various sources"""
        try:
            if not text and not audio and not image:
                return history, ""
                
            # Log the interaction start
            self.analytics.log_user_interaction(
                user_id="anonymous",
                interaction_type="message",
                agent_type="interface",
                duration=0,
                success=True,
                details={"input_types": {
                    "text": bool(text),
                    "audio": bool(audio),
                    "image": bool(image)
                }}
            )
            
            # Process through orchestrator
            context = {
                "history": history,
                "emotion": self.emotion_model(text)[0] if text else None,
                "has_audio": bool(audio),
                "has_image": bool(image)
            }
            
            response = self.orchestrator.process_message(
                message=text if text else "Sent media",
                context=context
            )
            
            # Add to chat history using message format
            history = history or []
            history.append({"role": "user", "content": text if text else "Sent media"})
            history.append({
                "role": "assistant",
                "content": response["message"],
                "metadata": {
                    "agent": response["agent_type"],
                    "task": response["task_type"]
                }
            })
            
            return history, ""  # Return empty string to clear text input
            
        except Exception as e:
            self.logger.error(f"Error processing input: {str(e)}")
            history = history or []
            history.append({
                "role": "assistant", 
                "content": "I apologize, but I encountered an error. Please try again."
            })
            return history, text  # Keep text input in case of error
            
    def clear_chat(self):
        """Clear the chat history"""
        self.logger.info("Clearing chat history")
        return None
        
    def emergency_help(self):
        """Provide emergency help information"""
        self.logger.info("Emergency help requested")
        
        # Use crisis agent through orchestrator
        response = self.orchestrator.process_message(
            message="EMERGENCY_HELP_REQUESTED",
            context={"is_emergency": True}
        )
        
        return [{
            "role": "assistant",
            "content": response["message"],
            "metadata": {
                "agent": response["agent_type"],
                "task": response["task_type"]
            }
        }]
        
    def launch(self, **kwargs):
        """Launch the interface"""
        self.logger.info("Launching interface")
        # Configure for Hugging Face Spaces
        kwargs.update({
            "show_api": False,
            "show_error": True,
            "quiet": True
        })
        self.interface.launch(**kwargs)