Spaces:
Runtime error
Runtime error
File size: 10,720 Bytes
6e790f0 76166e3 5a6069c d6fdb88 5a6069c 6f0fdff 76166e3 d28913a 76166e3 5a6069c 76166e3 5a6069c 6e790f0 d28913a 6e790f0 d6fdb88 6f0fdff d6fdb88 d28913a 76166e3 d6fdb88 6f0fdff d6fdb88 6f0fdff d6fdb88 6f0fdff d6fdb88 6f0fdff d6fdb88 76166e3 5a6069c 6e790f0 8e60da3 271a1f5 6e790f0 8e60da3 6e790f0 8e60da3 6e790f0 8e60da3 6e790f0 8e60da3 6e790f0 8e60da3 6e790f0 8e60da3 6e790f0 d28913a 6e790f0 8e60da3 6e790f0 8e60da3 6e790f0 d28913a 6e790f0 8e60da3 5a6069c 6e790f0 d28913a 6e790f0 5a6069c 6f0fdff d6fdb88 6f0fdff 5a6069c 271a1f5 8e60da3 271a1f5 6f0fdff 5a6069c 6e790f0 5a6069c 8e60da3 271a1f5 6e790f0 5a6069c 8e60da3 76166e3 5a6069c 76166e3 6f0fdff 271a1f5 6f0fdff 271a1f5 76166e3 5a6069c 6e790f0 76166e3 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 |
import os
import torch
import gradio as gr
import logging
from transformers import pipeline, AutoTokenizer, AutoModelForCausalLM
from utils.log_manager import LogManager
from utils.analytics_logger import AnalyticsLogger
from agents.orchestrator import WellnessOrchestrator
# Force CPU-only mode
torch.cuda.is_available = lambda: False
if hasattr(torch, 'set_default_tensor_type'):
torch.set_default_tensor_type('torch.FloatTensor')
class WellnessInterface:
def __init__(self, config):
self.config = config
self.log_manager = LogManager()
self.logger = self.log_manager.get_agent_logger("interface")
self.analytics = AnalyticsLogger()
# Ensure CPU-only operation
self.device = "cpu"
self.logger.info("Using CPU-only mode")
# Initialize models
self.initialize_models()
# Initialize orchestrator
self.initialize_orchestrator()
# Initialize interface
self.setup_interface()
def initialize_models(self):
"""Initialize AI models"""
self.logger.info("Initializing AI models")
try:
# Initialize emotion detection model
self.emotion_model = pipeline(
"text-classification",
model=self.config["MODEL_CONFIGS"]["emotion_detection"]["model_id"],
device=self.device
)
# Initialize conversation model
self.conversation_tokenizer = AutoTokenizer.from_pretrained(
self.config["MODEL_CONFIGS"]["conversation"]["model_id"]
)
self.conversation_model = AutoModelForCausalLM.from_pretrained(
self.config["MODEL_CONFIGS"]["conversation"]["model_id"],
device_map={"": self.device}
)
self.logger.info("AI models initialized successfully")
except Exception as e:
self.logger.error(f"Error initializing models: {str(e)}")
raise
def initialize_orchestrator(self):
"""Initialize CrewAI orchestrator"""
self.logger.info("Initializing CrewAI orchestrator")
try:
self.orchestrator = WellnessOrchestrator(
model_config=self.config["MODEL_CONFIGS"]
)
self.logger.info("Orchestrator initialized successfully")
except Exception as e:
self.logger.error(f"Error initializing orchestrator: {str(e)}")
raise
def setup_interface(self):
"""Setup the Gradio interface components"""
self.logger.info("Setting up interface components")
try:
with gr.Blocks(
theme=gr.themes.Soft(),
css=".gradio-container {background-color: #f7f7f7}"
) as self.interface:
gr.Markdown(
"# π§ Mental Wellness Support",
elem_classes="text-center"
)
gr.Markdown(
"A safe space for mental health support and guidance.",
elem_classes="text-center"
)
with gr.Row():
with gr.Column(scale=3):
self.chatbot = gr.Chatbot(
label="Mental Wellness Assistant",
height=400,
value=[],
type="messages",
elem_id="wellness_chat",
avatar_images=["π€", "π€"]
)
with gr.Row():
self.text_input = gr.Textbox(
label="Type your message",
placeholder="Enter your message here...",
lines=2,
scale=4,
container=False
)
self.submit_btn = gr.Button(
"Send",
scale=1,
variant="primary"
)
with gr.Row():
self.audio_input = gr.Audio(
label="Voice Input",
type="filepath",
format="wav",
scale=1
)
self.image_input = gr.Image(
label="Image Upload",
type="filepath",
scale=1
)
with gr.Column(scale=1):
with gr.Group():
gr.Markdown("### Quick Actions")
self.clear_btn = gr.Button(
"ποΈ Clear Chat",
variant="secondary"
)
self.emergency_btn = gr.Button(
"π¨ Emergency Help",
variant="stop"
)
gr.Markdown("### Resources")
gr.Markdown("""
- π Crisis Hotline: 988
- π Text HOME to 741741
- π₯ Emergency: 911
""")
# Event handlers
self.submit_btn.click(
fn=self.process_input,
inputs=[
self.text_input,
self.audio_input,
self.image_input,
self.chatbot
],
outputs=[
self.chatbot,
self.text_input
],
api_name="chat"
)
self.clear_btn.click(
fn=self.clear_chat,
inputs=[],
outputs=[self.chatbot],
api_name="clear"
)
self.emergency_btn.click(
fn=self.emergency_help,
inputs=[],
outputs=[self.chatbot],
api_name="emergency"
)
# Add keyboard shortcuts
self.text_input.submit(
fn=self.process_input,
inputs=[
self.text_input,
self.audio_input,
self.image_input,
self.chatbot
],
outputs=[
self.chatbot,
self.text_input
]
)
self.logger.info("Interface setup completed successfully")
except Exception as e:
self.logger.error(f"Error setting up interface: {str(e)}")
raise
def process_input(self, text, audio, image, history):
"""Process user input from various sources"""
try:
if not text and not audio and not image:
return history, ""
# Log the interaction start
self.analytics.log_user_interaction(
user_id="anonymous",
interaction_type="message",
agent_type="interface",
duration=0,
success=True,
details={"input_types": {
"text": bool(text),
"audio": bool(audio),
"image": bool(image)
}}
)
# Process through orchestrator
context = {
"history": history,
"emotion": self.emotion_model(text)[0] if text else None,
"has_audio": bool(audio),
"has_image": bool(image)
}
response = self.orchestrator.process_message(
message=text if text else "Sent media",
context=context
)
# Add to chat history using message format
history = history or []
history.append({"role": "user", "content": text if text else "Sent media"})
history.append({
"role": "assistant",
"content": response["message"],
"metadata": {
"agent": response["agent_type"],
"task": response["task_type"]
}
})
return history, "" # Return empty string to clear text input
except Exception as e:
self.logger.error(f"Error processing input: {str(e)}")
history = history or []
history.append({
"role": "assistant",
"content": "I apologize, but I encountered an error. Please try again."
})
return history, text # Keep text input in case of error
def clear_chat(self):
"""Clear the chat history"""
self.logger.info("Clearing chat history")
return None
def emergency_help(self):
"""Provide emergency help information"""
self.logger.info("Emergency help requested")
# Use crisis agent through orchestrator
response = self.orchestrator.process_message(
message="EMERGENCY_HELP_REQUESTED",
context={"is_emergency": True}
)
return [{
"role": "assistant",
"content": response["message"],
"metadata": {
"agent": response["agent_type"],
"task": response["task_type"]
}
}]
def launch(self, **kwargs):
"""Launch the interface"""
self.logger.info("Launching interface")
# Configure for Hugging Face Spaces
kwargs.update({
"show_api": False,
"show_error": True,
"quiet": True
})
self.interface.launch(**kwargs) |