File size: 3,496 Bytes
fdce364
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
import random

import gradio as gr
import os 

base_path = "images/"

def get_main_image_list():
    image_ids = {}
    for dir in os.listdir(base_path):
        img_id = dir
        for img_class in os.listdir(base_path + dir):
            image_path = base_path + dir + "/" + img_class + "/image.png"

            if img_id not in image_ids:
                image_ids[img_id] = {}
            image_ids[img_id][img_class] = {
                "path": image_path
            }

    return image_ids

def get_images(k=5):
    image_ids = get_main_image_list()
    images = [(list(image_ids.keys())[i], f"Image {i}") for i in range(len(image_ids.keys()))]
    return (image_ids, images)

current_select = None
dropdown_options = ["1", "2", "3"]

selected_index = None
selected_class = None
image_ids, images = get_images(k=10)
images_to_choose = list(map(lambda x: (image_ids[x[0]][list(image_ids[x[0]].keys())[0]]["path"], x[1]), images))

def process_image(gallery_data):
    if selected_index is None:
        return None
    key = images[selected_index][0]
    prediction = base_path + key + "/" + selected_class + "/pred_overlay.png"

    return prediction

def dropdown_change(evt):
    if selected_index is None:
        return None
    global selected_class
    selected_class = evt
    key = images[selected_index][0]
    support_images = get_support_set(selected_index, key + "/" + selected_class)
    return support_images

def get_select_value(evt: gr.SelectData):
    selected_image_index = evt.index
    global selected_index
    global selected_class
    selected_index = evt.index
    img_id = images[selected_image_index][0]
    keys = list(image_ids[images[selected_image_index][0]].keys())
    selected_class = keys[0]
    sup_images = get_support_set(selected_image_index, img_id + "/" + keys[0])
    return sup_images, gr.update(choices=keys, value=keys[0])

def get_support_set(selected_image_index, key):
    if selected_image_index is None:
        return None
    
    parent = base_path + key + "/"
    img_list = os.listdir(parent)

    img = [parent + x for x in img_list if x.startswith("support_im") and x.endswith("overlay.png")]
    return img

def generate_images():
    return images_to_choose, images_to_choose

with gr.Blocks() as demo:
    with gr.Row():
        with gr.Column(scale=1):
            imgs = gr.State()
            gallery = gr.Gallery(
                label="Generated images",
                show_label=False, elem_id="gallery",
                columns=[3], rows=[1], object_fit="contain", height="auto", 
                allow_preview= True, preview= True
            )
            demo.load(generate_images, None, [gallery, imgs])

        with gr.Column(scale=1): 
            support_gallery = gr.Gallery(
                label="Support Set Images",
                value=[],  
                columns=3, rows=2, 
                allow_preview=False,
            )

    with gr.Row():
        with gr.Column(scale=1):
            dropdown = gr.Dropdown(label="Select a class", scale=0.5, interactive=True)
        with gr.Column(scale=1):
            process_btn = gr.Button("Process", scale=0)
    
    gallery.select(get_select_value, None, [support_gallery, dropdown])
    dropdown.input(dropdown_change, dropdown, support_gallery)
    output_image = gr.Image(label="Processed Image", width=500)
    

    process_btn.click(process_image, gallery, output_image, support_gallery)

if __name__ == "__main__":
    demo.launch(share=True)