File size: 6,060 Bytes
3bb4c79
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
#!/usr/bin/python3
# -*- coding: utf-8 -*-

import urllib.parse
import uuid
from datetime import datetime
from enum import Enum
from typing import Any, Optional

import fire
import uvicorn
from fastapi import FastAPI, HTTPException, Request
from fastapi.responses import RedirectResponse, StreamingResponse
from fastapi.staticfiles import StaticFiles
from metagpt.actions.action import Action
from metagpt.actions.action_output import ActionOutput
from metagpt.config import CONFIG
from pydantic import BaseModel, Field

from agent.roles.software_company import RoleRun, SoftwareCompany


class QueryAnswerType(Enum):
    Query = "Q"
    Answer = "A"


class SentenceType(Enum):
    TEXT = "text"
    HIHT = "hint"
    ACTION = "action"


class MessageStatus(Enum):
    COMPLETE = "complete"


class SentenceValue(BaseModel):
    answer: str


class Sentence(BaseModel):
    type: str
    id: Optional[str] = None
    value: SentenceValue
    is_finished: Optional[bool] = None


class Sentences(BaseModel):
    id: Optional[str] = None
    action: Optional[str] = None
    role: Optional[str] = None
    skill: Optional[str] = None
    description: Optional[str] = None
    timestamp: str = datetime.now().strftime("%Y-%m-%dT%H:%M:%S.%f%z")
    status: str
    contents: list[Sentence]


class NewMsg(BaseModel):
    """Chat with MetaGPT"""

    query: str = Field(description="Problem description")
    config: dict[str, Any] = Field(description="Configuration information")


class ErrorInfo(BaseModel):
    error: str = None
    traceback: str = None


class ThinkActStep(BaseModel):
    id: str
    status: str
    title: str
    timestamp: str
    description: str
    content: Sentence = None


class ThinkActPrompt(BaseModel):
    message_id: int = None
    timestamp: str = datetime.now().strftime("%Y-%m-%dT%H:%M:%S.%f%z")
    step: ThinkActStep = None
    skill: Optional[str] = None
    role: Optional[str] = None

    def update_think(self, tc_id, action: Action):
        self.step = ThinkActStep(
            id=str(tc_id),
            status="running",
            title=action.desc,
            timestamp=datetime.now().strftime("%Y-%m-%dT%H:%M:%S.%f%z"),
            description=action.desc,
        )

    def update_act(self, message: ActionOutput):
        self.step.status = "finish"
        self.step.content = Sentence(
            type="text",
            id=ThinkActPrompt.guid32(),
            value=SentenceValue(answer=message.content),
            is_finished=True,
        )

    @staticmethod
    def guid32():
        return str(uuid.uuid4()).replace("-", "")[0:32]

    @property
    def prompt(self):
        v = self.model_dump_json()
        return urllib.parse.quote(v)


class MessageJsonModel(BaseModel):
    steps: list[Sentences]
    qa_type: str
    created_at: datetime = datetime.now()
    query_time: datetime = datetime.now()
    answer_time: datetime = datetime.now()
    score: Optional[int] = None
    feedback: Optional[str] = None

    def add_think_act(self, think_act_prompt: ThinkActPrompt):
        s = Sentences(
            action=think_act_prompt.step.title,
            skill=think_act_prompt.skill,
            description=think_act_prompt.step.description,
            timestamp=think_act_prompt.timestamp,
            status=think_act_prompt.step.status,
            contents=[think_act_prompt.step.content.model_dump()],
        )
        self.steps.append(s)

    @property
    def prompt(self):
        v = self.model_dump_json(exclude_unset=True)
        return urllib.parse.quote(v)


async def create_message(req_model: NewMsg, request: Request):
    """
    Session message stream
    """
    config = {k.upper(): v for k, v in req_model.config.items()}
    CONFIG.set_context(config)
    role = SoftwareCompany()
    role.company.run_project(idea=req_model.query)
    answer = MessageJsonModel(
        steps=[
            Sentences(
                contents=[
                    Sentence(
                        type=SentenceType.TEXT.value, value=SentenceValue(answer=req_model.query), is_finished=True
                    )
                ],
                status=MessageStatus.COMPLETE.value,
            )
        ],
        qa_type=QueryAnswerType.Answer.value,
    )

    tc_id = 0

    while True:
        tc_id += 1
        if request and await request.is_disconnected():
            return
        think_result: RoleRun = await role.think()
        if not think_result:  # End of conversion
            break
        think_act_prompt = ThinkActPrompt(role=think_result.role.profile)
        think_act_prompt.update_think(tc_id, think_result)
        yield think_act_prompt.prompt + "\n\n"
        act_result = await role.act()
        think_act_prompt.update_act(act_result)
        yield think_act_prompt.prompt + "\n\n"
        answer.add_think_act(think_act_prompt)
    yield answer.prompt + "\n\n"  # Notify the front-end that the message is complete.


class ChatHandler:
    @staticmethod
    async def create_message(req_model: NewMsg, request: Request):
        """Message stream, using SSE."""
        event = create_message(req_model, request)
        headers = {"Cache-Control": "no-cache", "Connection": "keep-alive"}
        return StreamingResponse(event, headers=headers, media_type="text/event-stream")


app = FastAPI()

app.mount(
    "/static",
    StaticFiles(directory="./agent/static/", check_dir=True),
    name="static",
)
app.add_api_route(
    "/api/messages",
    endpoint=ChatHandler.create_message,
    methods=["post"],
    summary="Session message sending (streaming response)",
)


@app.get("/{catch_all:path}")
async def catch_all(request: Request):
    if request.url.path == "/":
        return RedirectResponse(url="/static/index.html")
    if request.url.path.startswith("/api"):
        raise HTTPException(status_code=404)

    new_path = f"/static{request.url.path}"
    return RedirectResponse(url=new_path)


def main():
    uvicorn.run(app="__main__:app", host="0.0.0.0", port=7860)


if __name__ == "__main__":
    fire.Fire(main)