Spaces:
Runtime error
Runtime error
File size: 1,793 Bytes
5f0e5c0 d359b22 5f0e5c0 d359b22 5f0e5c0 b314aff 5f0e5c0 15b93c3 5f0e5c0 d1ca099 0eb2a2b d1ca099 0eb2a2b 5f0e5c0 39fff43 5f0e5c0 85cdc3d 5f0e5c0 4f40672 39fff43 5f0e5c0 2ac89d4 85cdc3d 2ac89d4 5f0e5c0 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 |
import gradio as gr
import timm
import torch
import torch.nn as nn
from torchvision import datasets, transforms
from PIL import Image
from torch.utils.mobile_optimizer import optimize_for_mobile
model = timm.create_model('vit_base_patch16_224', pretrained=True)
model.head = torch.nn.Linear(in_features=model.head.in_features, out_features=5)
#path = "opt_model.pt"
#model = model.jit.load(path)
model.eval()
def transform_image(img_sample):
transform = transforms.Compose([
transforms.Resize((224, 224)), # Resize to 224x224
transforms.ToTensor(), # Convert PIL image to tensor
transforms.ColorJitter(contrast=0.5), # Contrast
transforms.RandomAdjustSharpness(sharpness_factor=0.5),
transforms.RandomSolarize(threshold=0.75),
transforms.RandomAutocontrast(p=1),
])
transformed_img = transform(img_sample)
return transformed_img
def predict(Image):
tranformed_img = transform_image(Image)
model.eval()
img = transform_image(Image)
img = img.reshape(1,3,224,224)
#img = torch.from_numpy(tranformed_img)
#outputs = model(img)
#class_out = outputs.argmax(dim=1)
with torch.no_grad():
grade = torch.softmax(model(img.float()), dim=1)[0]
category = ["Normal", "Mild", "Moderate", "Severe", "Proliferative"]
output_dict = {}
for cat, value in zip(category, grade):
output_dict[cat] = value.item()
return output_dict
image = gr.Image(type="pil")#shape=(224, 224), image_mode="RGB")
label = gr.Label(label="Level")
demo = gr.Interface(
fn=predict,
inputs=image,
outputs=label,
#examples=["examples/0.png", "examples/1.png", "examples/2.png", "examples/3.png", "examples/4.png"]
)
if __name__ == "__main__":
demo.launch(debug=True)
|