File size: 18,116 Bytes
79d2379
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
import gradio as gr
import pandas as pd
from PIL import Image
from rdkit import RDLogger
from molecule_generation_helpers import *
from property_prediction_helpers import *

RDLogger.logger().setLevel(RDLogger.ERROR)

# Predefined dataset paths (these should be adjusted to your file paths)
predefined_datasets = {
    " ": " ",
    "BACE": f"./data/bace/train.csv, ./data/bace/test.csv, smiles, Class",
    "ESOL": f"./data/esol/train.csv, ./data/esol/test.csv, smiles, prop",
}

# Models
models_enabled = ["SELFIES-TED", "MHG-GED", "MolFormer", "SMI-TED"]

# Fusion Types
fusion_available = ["Concat"]


# Function to load a predefined dataset from the local path
def load_predefined_dataset(dataset_name):
    val = predefined_datasets.get(dataset_name)
    if val:
        df = pd.read_csv(val.split(",")[0])
        return (
            df.head(),
            gr.update(choices=list(df.columns)),
            gr.update(choices=list(df.columns)),
            dataset_name.lower(),
        )
    else:
        return (
            pd.DataFrame(),
            gr.update(choices=[]),
            gr.update(choices=[]),
            f"Dataset not found",
        )


# Function to handle dataset selection (predefined or custom)
def handle_dataset_selection(selected_dataset):
    if selected_dataset == "Custom Dataset":
        # Show file upload fields for train and test datasets if "Custom Dataset" is selected
        return (
            gr.update(visible=True),
            gr.update(visible=True),
            gr.update(visible=True),
            gr.update(visible=True),
            gr.update(visible=True),
            gr.update(visible=False),
            gr.update(visible=True),
            gr.update(visible=True),
        )
    return (
        gr.update(visible=True),
        gr.update(visible=False),
        gr.update(visible=False),
        gr.update(visible=False),
        gr.update(visible=False),
        gr.update(visible=False),
        gr.update(visible=False),
        gr.update(visible=False),
    )


# Dynamically show relevant hyperparameters based on selected model
def update_hyperparameters(model_name):
    if model_name == "XGBClassifier":
        return (
            gr.update(visible=True),
            gr.update(visible=True),
            gr.update(visible=True),
            gr.update(visible=False),
            gr.update(visible=False),
        )
    elif model_name == "SVR":
        return (
            gr.update(visible=False),
            gr.update(visible=False),
            gr.update(visible=False),
            gr.update(visible=True),
            gr.update(visible=True),
        )
    elif model_name == "Kernel Ridge":
        return (
            gr.update(visible=False),
            gr.update(visible=False),
            gr.update(visible=True),
            gr.update(visible=True),
            gr.update(visible=True),
        )
    elif model_name == "Linear Regression":
        return (
            gr.update(visible=False),
            gr.update(visible=False),
            gr.update(visible=False),
            gr.update(visible=False),
            gr.update(visible=False),
        )
    elif model_name == "Default - Auto":
        return (
            gr.update(visible=False),
            gr.update(visible=False),
            gr.update(visible=False),
            gr.update(visible=False),
            gr.update(visible=False),
        )


# Function to select input and output columns and display a message
def select_columns(input_column, output_column, train_data, test_data, dataset_name):
    if input_column and output_column:
        return f"{train_data.name},{test_data.name},{input_column},{output_column},{dataset_name}"
    return "Please select both input and output columns."


# Function to set Dataset Name
def set_dataname(dataset_name, dataset_selector):
    return dataset_name if dataset_selector == "Custom Dataset" else dataset_selector


# Function to display the head of the uploaded CSV file
def display_csv_head(file):
    if file is not None:
        # Load the CSV file into a DataFrame
        df = pd.read_csv(file.name)
        return (
            df.head(),
            gr.update(choices=list(df.columns)),
            gr.update(choices=list(df.columns)),
        )
    return pd.DataFrame(), gr.update(choices=[]), gr.update(choices=[])


# Dictionary for SMILES strings and corresponding images (you can replace with your actual image paths)
smiles_image_mapping = {
    # Example SMILES for ethanol
    "Mol 1": {
        "smiles": "C=C(C)CC(=O)NC[C@H](CO)NC(=O)C=Cc1ccc(C)c(Cl)c1",
        "image": "img/img1.png",
    },
    # Example SMILES for butane
    "Mol 2": {
        "smiles": "C=CC1(CC(=O)NC[C@@H](CCCC)NC(=O)c2cc(Cl)cc(Br)c2)CC1",
        "image": "img/img2.png",
    },
    # Example SMILES for ethylamine
    "Mol 3": {
        "smiles": "C=C(C)C[C@H](NC(C)=O)C(=O)N1CC[C@H](NC(=O)[C@H]2C[C@@]2(C)Br)C(C)(C)C1",
        "image": "img/img3.png",
    },
    # Example SMILES for diethyl ether
    "Mol 4": {
        "smiles": "C=C1CC(CC(=O)N[C@H]2CCN(C(=O)c3ncccc3SC)C23CC3)C1",
        "image": "img/img4.png",
    },
    # Example SMILES for chloroethane
    "Mol 5": {
        "smiles": "C=CCS[C@@H](C)CC(=O)OCC",
        "image": "img/img5.png",
    },
}


# Load images for selection
def load_image(path):
    try:
        return Image.open(smiles_image_mapping[path]["image"])
    except:
        pass


# Function to handle image selection
def handle_image_selection(image_key):
    if not image_key:
        return None, None
    smiles = smiles_image_mapping[image_key]["smiles"]
    mol_image = smiles_to_image(smiles)
    return smiles, mol_image


# Introduction
with open("INTRODUCTION.md") as f:
    # introduction = gr.Markdown(f.read())
    with gr.Blocks() as introduction:
        gr.Markdown(f.read())
        gr.Markdown("---\n# Debug")
        gr.HTML("HTML text: <img src='file/img/selfies-ted.png'>")
        gr.Markdown("Markdown text: ![selfies-ted](file/img/selfies-ted.png)")
        gr.HTML("HTML text: <img src='https://huggingface.co/front/assets/huggingface_logo-noborder.svg'>")
        gr.Markdown("Markdown text: ![Huggingface Logo](https://huggingface.co/front/assets/huggingface_logo-noborder.svg)")

# Property Prediction
with gr.Blocks() as property_prediction:
    log_df = pd.DataFrame(
        {"": [], 'Selected Models': [], 'Dataset': [], 'Task': [], 'Result': []}
    )
    state = gr.State({"log_df": log_df})
    gr.HTML(
        '''
    <p style="text-align: center">
        Task : Property Prediction
        <br>
        Models are finetuned with different combination of modalities on the uploaded or selected built data set.
    </p>
    '''
    )
    with gr.Row():
        with gr.Column():
            # Dropdown menu for predefined datasets including "Custom Dataset" option
            dataset_selector = gr.Dropdown(
                label="Select Dataset",
                choices=list(predefined_datasets.keys()) + ["Custom Dataset"],
            )
            # Display the message for selected columns
            selected_columns_message = gr.Textbox(
                label="Selected Columns Info", visible=False
            )

            with gr.Accordion("Dataset Settings", open=True):
                # File upload options for custom dataset (train and test)
                dataset_name = gr.Textbox(label="Dataset Name", visible=False)
                train_file = gr.File(
                    label="Upload Custom Train Dataset",
                    file_types=[".csv"],
                    visible=False,
                )
                train_display = gr.Dataframe(
                    label="Train Dataset Preview (First 5 Rows)",
                    visible=False,
                    interactive=False,
                )

                test_file = gr.File(
                    label="Upload Custom Test Dataset",
                    file_types=[".csv"],
                    visible=False,
                )
                test_display = gr.Dataframe(
                    label="Test Dataset Preview (First 5 Rows)",
                    visible=False,
                    interactive=False,
                )

                # Predefined dataset displays
                predefined_display = gr.Dataframe(
                    label="Predefined Dataset Preview (First 5 Rows)",
                    visible=False,
                    interactive=False,
                )

                # Dropdowns for selecting input and output columns for the custom dataset
                input_column_selector = gr.Dropdown(
                    label="Select Input Column", choices=[], visible=False
                )
                output_column_selector = gr.Dropdown(
                    label="Select Output Column", choices=[], visible=False
                )

                # When a dataset is selected, show either file upload fields (for custom) or load predefined datasets
                dataset_selector.change(
                    handle_dataset_selection,
                    inputs=dataset_selector,
                    outputs=[
                        dataset_name,
                        train_file,
                        train_display,
                        test_file,
                        test_display,
                        predefined_display,
                        input_column_selector,
                        output_column_selector,
                    ],
                )

                # When a predefined dataset is selected, load its head and update column selectors
                dataset_selector.change(
                    load_predefined_dataset,
                    inputs=dataset_selector,
                    outputs=[
                        predefined_display,
                        input_column_selector,
                        output_column_selector,
                        selected_columns_message,
                    ],
                )

                # When a custom train file is uploaded, display its head and update column selectors
                train_file.change(
                    display_csv_head,
                    inputs=train_file,
                    outputs=[
                        train_display,
                        input_column_selector,
                        output_column_selector,
                    ],
                )

                # When a custom test file is uploaded, display its head
                test_file.change(
                    display_csv_head,
                    inputs=test_file,
                    outputs=[
                        test_display,
                        input_column_selector,
                        output_column_selector,
                    ],
                )

                dataset_selector.change(
                    set_dataname,
                    inputs=[dataset_name, dataset_selector],
                    outputs=dataset_name,
                )

                # Update the selected columns information when dropdown values are changed
                input_column_selector.change(
                    select_columns,
                    inputs=[
                        input_column_selector,
                        output_column_selector,
                        train_file,
                        test_file,
                        dataset_name,
                    ],
                    outputs=selected_columns_message,
                )

                output_column_selector.change(
                    select_columns,
                    inputs=[
                        input_column_selector,
                        output_column_selector,
                        train_file,
                        test_file,
                        dataset_name,
                    ],
                    outputs=selected_columns_message,
                )

            model_checkbox = gr.CheckboxGroup(
                choices=models_enabled, label="Select Model"
            )

            task_radiobutton = gr.Radio(
                choices=["Classification", "Regression"], label="Task Type"
            )

            ####### adding hyper parameter tuning ###########
            model_name = gr.Dropdown(
                [
                    "Default - Auto",
                    "XGBClassifier",
                    "SVR",
                    "Kernel Ridge",
                    "Linear Regression",
                ],
                label="Select Downstream Model",
            )
            with gr.Accordion("Downstream Hyperparameter Settings", open=True):
                # Create placeholders for hyperparameter components
                max_depth = gr.Slider(1, 20, step=1, visible=False, label="max_depth")
                n_estimators = gr.Slider(
                    100, 5000, step=100, visible=False, label="n_estimators"
                )
                alpha = gr.Slider(0.1, 10.0, step=0.1, visible=False, label="alpha")
                degree = gr.Slider(1, 20, step=1, visible=False, label="degree")
                kernel = gr.Dropdown(
                    choices=["rbf", "poly", "linear"], visible=False, label="kernel"
                )

                # Output textbox
                output = gr.Textbox(label="Loaded Parameters")

            # When model is selected, update which hyperparameters are visible
            model_name.change(
                update_hyperparameters,
                inputs=[model_name],
                outputs=[max_depth, n_estimators, alpha, degree, kernel],
            )

            # Submit button to create the model with selected hyperparameters
            submit_button = gr.Button("Create Downstream Model")

            # When the submit button is clicked, run the on_submit function
            submit_button.click(
                create_downstream_model,
                inputs=[model_name, max_depth, n_estimators, alpha, degree, kernel],
                outputs=output,
            )
            ###### End of hyper param tuning #########

            fusion_radiobutton = gr.Radio(choices=fusion_available, label="Fusion Type")

            eval_button = gr.Button("Train downstream model")

        # Right Column
        with gr.Column():
            eval_output = gr.Textbox(label="Train downstream model")

            plot_radio = gr.Radio(
                choices=["ROC-AUC", "Parity Plot", "Latent Space"],
                label="Select Plot Type",
            )
            plot_output = gr.Plot(label="Visualization")

            create_log = gr.Button("Store log")

            log_table = gr.Dataframe(
                value=log_df, label="Log of Selections and Results", interactive=False
            )

            eval_button.click(
                display_eval,
                inputs=[
                    model_checkbox,
                    selected_columns_message,
                    task_radiobutton,
                    output,
                    fusion_radiobutton,
                    state,
                ],
                outputs=eval_output,
            )

            plot_radio.change(
                display_plot, inputs=[plot_radio, state], outputs=plot_output
            )

            create_log.click(
                evaluate_and_log,
                inputs=[
                    model_checkbox,
                    dataset_name,
                    task_radiobutton,
                    eval_output,
                    state,
                ],
                outputs=log_table,
            )


# Molecule Generation
with gr.Blocks() as molecule_generation:
    gr.HTML(
        '''
    <p style="text-align: center">
        Task : Molecule Generation
        <br>
        Generate a new molecule similar to the initial molecule with better drug-likeness and synthetic accessibility.
    </p>
    '''
    )
    with gr.Row():
        with gr.Column():
            smiles_input = gr.Textbox(label="Input SMILES String")
            image_display = gr.Image(label="Molecule Image", height=250, width=250)
            # Show images for selection
            with gr.Accordion("Select from sample molecules", open=False):
                image_selector = gr.Radio(
                    choices=list(smiles_image_mapping.keys()),
                    label="Select from sample molecules",
                    value=None,
                )
                image_selector.change(load_image, image_selector, image_display)
            clear_button = gr.Button("Clear")
            generate_button = gr.Button("Submit", variant="primary")

        # Right Column
        with gr.Column():
            gen_image_display = gr.Image(
                label="Generated Molecule Image", height=250, width=250
            )
            generated_output = gr.Textbox(label="Generated Output")
            property_table = gr.Dataframe(label="Molecular Properties Comparison")

            # Handle image selection
            image_selector.change(
                handle_image_selection,
                inputs=image_selector,
                outputs=[smiles_input, image_display],
            )
            smiles_input.change(
                smiles_to_image, inputs=smiles_input, outputs=image_display
            )

            # Generate button to display canonical SMILES and molecule image
            generate_button.click(
                generate_canonical,
                inputs=smiles_input,
                outputs=[property_table, generated_output, gen_image_display],
            )
        clear_button.click(
            lambda: (None, None, None, None, None, None),
            outputs=[
                smiles_input,
                image_display,
                image_selector,
                gen_image_display,
                generated_output,
                property_table,
            ],
        )


# Render with tabs
gr.TabbedInterface(
    [introduction, property_prediction, molecule_generation],
    ["Introduction", "Property Prediction", "Molecule Generation"],
).launch(server_name="0.0.0.0", allowed_paths=["./"])