File size: 18,116 Bytes
79d2379 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 |
import gradio as gr
import pandas as pd
from PIL import Image
from rdkit import RDLogger
from molecule_generation_helpers import *
from property_prediction_helpers import *
RDLogger.logger().setLevel(RDLogger.ERROR)
# Predefined dataset paths (these should be adjusted to your file paths)
predefined_datasets = {
" ": " ",
"BACE": f"./data/bace/train.csv, ./data/bace/test.csv, smiles, Class",
"ESOL": f"./data/esol/train.csv, ./data/esol/test.csv, smiles, prop",
}
# Models
models_enabled = ["SELFIES-TED", "MHG-GED", "MolFormer", "SMI-TED"]
# Fusion Types
fusion_available = ["Concat"]
# Function to load a predefined dataset from the local path
def load_predefined_dataset(dataset_name):
val = predefined_datasets.get(dataset_name)
if val:
df = pd.read_csv(val.split(",")[0])
return (
df.head(),
gr.update(choices=list(df.columns)),
gr.update(choices=list(df.columns)),
dataset_name.lower(),
)
else:
return (
pd.DataFrame(),
gr.update(choices=[]),
gr.update(choices=[]),
f"Dataset not found",
)
# Function to handle dataset selection (predefined or custom)
def handle_dataset_selection(selected_dataset):
if selected_dataset == "Custom Dataset":
# Show file upload fields for train and test datasets if "Custom Dataset" is selected
return (
gr.update(visible=True),
gr.update(visible=True),
gr.update(visible=True),
gr.update(visible=True),
gr.update(visible=True),
gr.update(visible=False),
gr.update(visible=True),
gr.update(visible=True),
)
return (
gr.update(visible=True),
gr.update(visible=False),
gr.update(visible=False),
gr.update(visible=False),
gr.update(visible=False),
gr.update(visible=False),
gr.update(visible=False),
gr.update(visible=False),
)
# Dynamically show relevant hyperparameters based on selected model
def update_hyperparameters(model_name):
if model_name == "XGBClassifier":
return (
gr.update(visible=True),
gr.update(visible=True),
gr.update(visible=True),
gr.update(visible=False),
gr.update(visible=False),
)
elif model_name == "SVR":
return (
gr.update(visible=False),
gr.update(visible=False),
gr.update(visible=False),
gr.update(visible=True),
gr.update(visible=True),
)
elif model_name == "Kernel Ridge":
return (
gr.update(visible=False),
gr.update(visible=False),
gr.update(visible=True),
gr.update(visible=True),
gr.update(visible=True),
)
elif model_name == "Linear Regression":
return (
gr.update(visible=False),
gr.update(visible=False),
gr.update(visible=False),
gr.update(visible=False),
gr.update(visible=False),
)
elif model_name == "Default - Auto":
return (
gr.update(visible=False),
gr.update(visible=False),
gr.update(visible=False),
gr.update(visible=False),
gr.update(visible=False),
)
# Function to select input and output columns and display a message
def select_columns(input_column, output_column, train_data, test_data, dataset_name):
if input_column and output_column:
return f"{train_data.name},{test_data.name},{input_column},{output_column},{dataset_name}"
return "Please select both input and output columns."
# Function to set Dataset Name
def set_dataname(dataset_name, dataset_selector):
return dataset_name if dataset_selector == "Custom Dataset" else dataset_selector
# Function to display the head of the uploaded CSV file
def display_csv_head(file):
if file is not None:
# Load the CSV file into a DataFrame
df = pd.read_csv(file.name)
return (
df.head(),
gr.update(choices=list(df.columns)),
gr.update(choices=list(df.columns)),
)
return pd.DataFrame(), gr.update(choices=[]), gr.update(choices=[])
# Dictionary for SMILES strings and corresponding images (you can replace with your actual image paths)
smiles_image_mapping = {
# Example SMILES for ethanol
"Mol 1": {
"smiles": "C=C(C)CC(=O)NC[C@H](CO)NC(=O)C=Cc1ccc(C)c(Cl)c1",
"image": "img/img1.png",
},
# Example SMILES for butane
"Mol 2": {
"smiles": "C=CC1(CC(=O)NC[C@@H](CCCC)NC(=O)c2cc(Cl)cc(Br)c2)CC1",
"image": "img/img2.png",
},
# Example SMILES for ethylamine
"Mol 3": {
"smiles": "C=C(C)C[C@H](NC(C)=O)C(=O)N1CC[C@H](NC(=O)[C@H]2C[C@@]2(C)Br)C(C)(C)C1",
"image": "img/img3.png",
},
# Example SMILES for diethyl ether
"Mol 4": {
"smiles": "C=C1CC(CC(=O)N[C@H]2CCN(C(=O)c3ncccc3SC)C23CC3)C1",
"image": "img/img4.png",
},
# Example SMILES for chloroethane
"Mol 5": {
"smiles": "C=CCS[C@@H](C)CC(=O)OCC",
"image": "img/img5.png",
},
}
# Load images for selection
def load_image(path):
try:
return Image.open(smiles_image_mapping[path]["image"])
except:
pass
# Function to handle image selection
def handle_image_selection(image_key):
if not image_key:
return None, None
smiles = smiles_image_mapping[image_key]["smiles"]
mol_image = smiles_to_image(smiles)
return smiles, mol_image
# Introduction
with open("INTRODUCTION.md") as f:
# introduction = gr.Markdown(f.read())
with gr.Blocks() as introduction:
gr.Markdown(f.read())
gr.Markdown("---\n# Debug")
gr.HTML("HTML text: <img src='file/img/selfies-ted.png'>")
gr.Markdown("Markdown text: ")
gr.HTML("HTML text: <img src='https://huggingface.co/front/assets/huggingface_logo-noborder.svg'>")
gr.Markdown("Markdown text: ")
# Property Prediction
with gr.Blocks() as property_prediction:
log_df = pd.DataFrame(
{"": [], 'Selected Models': [], 'Dataset': [], 'Task': [], 'Result': []}
)
state = gr.State({"log_df": log_df})
gr.HTML(
'''
<p style="text-align: center">
Task : Property Prediction
<br>
Models are finetuned with different combination of modalities on the uploaded or selected built data set.
</p>
'''
)
with gr.Row():
with gr.Column():
# Dropdown menu for predefined datasets including "Custom Dataset" option
dataset_selector = gr.Dropdown(
label="Select Dataset",
choices=list(predefined_datasets.keys()) + ["Custom Dataset"],
)
# Display the message for selected columns
selected_columns_message = gr.Textbox(
label="Selected Columns Info", visible=False
)
with gr.Accordion("Dataset Settings", open=True):
# File upload options for custom dataset (train and test)
dataset_name = gr.Textbox(label="Dataset Name", visible=False)
train_file = gr.File(
label="Upload Custom Train Dataset",
file_types=[".csv"],
visible=False,
)
train_display = gr.Dataframe(
label="Train Dataset Preview (First 5 Rows)",
visible=False,
interactive=False,
)
test_file = gr.File(
label="Upload Custom Test Dataset",
file_types=[".csv"],
visible=False,
)
test_display = gr.Dataframe(
label="Test Dataset Preview (First 5 Rows)",
visible=False,
interactive=False,
)
# Predefined dataset displays
predefined_display = gr.Dataframe(
label="Predefined Dataset Preview (First 5 Rows)",
visible=False,
interactive=False,
)
# Dropdowns for selecting input and output columns for the custom dataset
input_column_selector = gr.Dropdown(
label="Select Input Column", choices=[], visible=False
)
output_column_selector = gr.Dropdown(
label="Select Output Column", choices=[], visible=False
)
# When a dataset is selected, show either file upload fields (for custom) or load predefined datasets
dataset_selector.change(
handle_dataset_selection,
inputs=dataset_selector,
outputs=[
dataset_name,
train_file,
train_display,
test_file,
test_display,
predefined_display,
input_column_selector,
output_column_selector,
],
)
# When a predefined dataset is selected, load its head and update column selectors
dataset_selector.change(
load_predefined_dataset,
inputs=dataset_selector,
outputs=[
predefined_display,
input_column_selector,
output_column_selector,
selected_columns_message,
],
)
# When a custom train file is uploaded, display its head and update column selectors
train_file.change(
display_csv_head,
inputs=train_file,
outputs=[
train_display,
input_column_selector,
output_column_selector,
],
)
# When a custom test file is uploaded, display its head
test_file.change(
display_csv_head,
inputs=test_file,
outputs=[
test_display,
input_column_selector,
output_column_selector,
],
)
dataset_selector.change(
set_dataname,
inputs=[dataset_name, dataset_selector],
outputs=dataset_name,
)
# Update the selected columns information when dropdown values are changed
input_column_selector.change(
select_columns,
inputs=[
input_column_selector,
output_column_selector,
train_file,
test_file,
dataset_name,
],
outputs=selected_columns_message,
)
output_column_selector.change(
select_columns,
inputs=[
input_column_selector,
output_column_selector,
train_file,
test_file,
dataset_name,
],
outputs=selected_columns_message,
)
model_checkbox = gr.CheckboxGroup(
choices=models_enabled, label="Select Model"
)
task_radiobutton = gr.Radio(
choices=["Classification", "Regression"], label="Task Type"
)
####### adding hyper parameter tuning ###########
model_name = gr.Dropdown(
[
"Default - Auto",
"XGBClassifier",
"SVR",
"Kernel Ridge",
"Linear Regression",
],
label="Select Downstream Model",
)
with gr.Accordion("Downstream Hyperparameter Settings", open=True):
# Create placeholders for hyperparameter components
max_depth = gr.Slider(1, 20, step=1, visible=False, label="max_depth")
n_estimators = gr.Slider(
100, 5000, step=100, visible=False, label="n_estimators"
)
alpha = gr.Slider(0.1, 10.0, step=0.1, visible=False, label="alpha")
degree = gr.Slider(1, 20, step=1, visible=False, label="degree")
kernel = gr.Dropdown(
choices=["rbf", "poly", "linear"], visible=False, label="kernel"
)
# Output textbox
output = gr.Textbox(label="Loaded Parameters")
# When model is selected, update which hyperparameters are visible
model_name.change(
update_hyperparameters,
inputs=[model_name],
outputs=[max_depth, n_estimators, alpha, degree, kernel],
)
# Submit button to create the model with selected hyperparameters
submit_button = gr.Button("Create Downstream Model")
# When the submit button is clicked, run the on_submit function
submit_button.click(
create_downstream_model,
inputs=[model_name, max_depth, n_estimators, alpha, degree, kernel],
outputs=output,
)
###### End of hyper param tuning #########
fusion_radiobutton = gr.Radio(choices=fusion_available, label="Fusion Type")
eval_button = gr.Button("Train downstream model")
# Right Column
with gr.Column():
eval_output = gr.Textbox(label="Train downstream model")
plot_radio = gr.Radio(
choices=["ROC-AUC", "Parity Plot", "Latent Space"],
label="Select Plot Type",
)
plot_output = gr.Plot(label="Visualization")
create_log = gr.Button("Store log")
log_table = gr.Dataframe(
value=log_df, label="Log of Selections and Results", interactive=False
)
eval_button.click(
display_eval,
inputs=[
model_checkbox,
selected_columns_message,
task_radiobutton,
output,
fusion_radiobutton,
state,
],
outputs=eval_output,
)
plot_radio.change(
display_plot, inputs=[plot_radio, state], outputs=plot_output
)
create_log.click(
evaluate_and_log,
inputs=[
model_checkbox,
dataset_name,
task_radiobutton,
eval_output,
state,
],
outputs=log_table,
)
# Molecule Generation
with gr.Blocks() as molecule_generation:
gr.HTML(
'''
<p style="text-align: center">
Task : Molecule Generation
<br>
Generate a new molecule similar to the initial molecule with better drug-likeness and synthetic accessibility.
</p>
'''
)
with gr.Row():
with gr.Column():
smiles_input = gr.Textbox(label="Input SMILES String")
image_display = gr.Image(label="Molecule Image", height=250, width=250)
# Show images for selection
with gr.Accordion("Select from sample molecules", open=False):
image_selector = gr.Radio(
choices=list(smiles_image_mapping.keys()),
label="Select from sample molecules",
value=None,
)
image_selector.change(load_image, image_selector, image_display)
clear_button = gr.Button("Clear")
generate_button = gr.Button("Submit", variant="primary")
# Right Column
with gr.Column():
gen_image_display = gr.Image(
label="Generated Molecule Image", height=250, width=250
)
generated_output = gr.Textbox(label="Generated Output")
property_table = gr.Dataframe(label="Molecular Properties Comparison")
# Handle image selection
image_selector.change(
handle_image_selection,
inputs=image_selector,
outputs=[smiles_input, image_display],
)
smiles_input.change(
smiles_to_image, inputs=smiles_input, outputs=image_display
)
# Generate button to display canonical SMILES and molecule image
generate_button.click(
generate_canonical,
inputs=smiles_input,
outputs=[property_table, generated_output, gen_image_display],
)
clear_button.click(
lambda: (None, None, None, None, None, None),
outputs=[
smiles_input,
image_display,
image_selector,
gen_image_display,
generated_output,
property_table,
],
)
# Render with tabs
gr.TabbedInterface(
[introduction, property_prediction, molecule_generation],
["Introduction", "Property Prediction", "Molecule Generation"],
).launch(server_name="0.0.0.0", allowed_paths=["./"])
|