Spaces:
Runtime error
Runtime error
#IMPORTANT PART ONLY | |
#!pip install deepface | |
import gradio as gr | |
from deepface import DeepFace | |
#from google.colab import drive | |
#drive.mount('/content/drive') | |
#img1_path = '/content/drive/My Drive/Colab Notebooks/DeepLearning/FaceRecognition/PhotoDataSet/10Jan_1.jpeg' | |
#import zipfile | |
#with zipfile.ZipFile("PhotoDataSet.zip","r") as zip_ref: | |
#zip_ref.extractall("db_path") | |
!curl -O https://huggingface.co/spaces/ipvikas/ImageProcessing/blob/main/PhotoDataSet.zip | |
!unzip -q PhotoDataSet.zip | |
!ls | |
!ls db_path | |
import os | |
#db_path='/content/drive/My Drive/Colab Notebooks/DeepLearning/FaceRecognition/PhotoDataSet/' | |
import pandas as pd | |
def get_deepface(image): | |
df = DeepFace.find(img_path=image, db_path=db_path) | |
#print(df.head()) | |
return DeepFace.analyze(img_path=image) | |
description = "Deepface is a lightweight face recognition and facial attribute analysis (age, gender, emotion and race) framework for python. It is a hybrid face recognition framework wrapping state-of-the-art models: VGG-Face, Google FaceNet, OpenFace, Facebook DeepFace, DeepID, ArcFace and Dlib." | |
facial_attribute_demo = gr.Interface( | |
fn=get_deepface, | |
inputs="image", | |
outputs=['text'], | |
title="face recognition and facial attribute analysis", | |
description=description, | |
enable_queue=True, | |
examples=[["10Jan_1.jpeg"]], | |
cache_examples=False) | |
facial_attribute_demo .launch() |