ipvikas commited on
Commit
1d305df
·
1 Parent(s): ef881ff

Create app.py

Browse files
Files changed (1) hide show
  1. app.py +57 -0
app.py ADDED
@@ -0,0 +1,57 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import os
2
+ import gradio as gr
3
+
4
+
5
+ from transformers import VisionEncoderDecoderModel
6
+
7
+ # initialize a vit-bert from a pretrained ViT and a pretrained BERT model. Note that the cross-attention layers will be randomly initialized
8
+ model = VisionEncoderDecoderModel.from_encoder_decoder_pretrained(
9
+ "google/vit-base-patch16-224-in21k", "bert-base-uncased"
10
+ )
11
+ # saving model after fine-tuning
12
+ model.save_pretrained("./vit-bert")
13
+ # load fine-tuned model
14
+ model = VisionEncoderDecoderModel.from_pretrained("./vit-bert")
15
+
16
+ #####################
17
+ from transformers import AutoTokenizer
18
+ repo_name = "ydshieh/vit-gpt2-coco-en"
19
+ feature_extractor = ViTFeatureExtractor.from_pretrained(repo_name)
20
+ tokenizer = AutoTokenizer.from_pretrained(repo_name)
21
+ model = VisionEncoderDecoderModel.from_pretrained(repo_name)
22
+
23
+ def get_quote(image_1):
24
+ #reader = easyocr.Reader(['en'])
25
+ image = Image.open(image_1,mode = 'r')
26
+
27
+
28
+
29
+ ##############
30
+ pixel_values = feature_extractor(image, return_tensors="pt").pixel_values
31
+ # autoregressively generate text (using beam search or other decoding strategy)
32
+ generated_ids = model.generate(pixel_values, max_length=16, num_beams=4, return_dict_in_generate=True)
33
+
34
+ ################
35
+ # decode into text
36
+ preds = tokenizer.batch_decode(generated_ids[0], skip_special_tokens=True)
37
+ preds = [pred.strip() for pred in preds]
38
+ #print(preds)
39
+
40
+ return preds
41
+
42
+
43
+ #1: Text to Speech
44
+ #import gradio as gr
45
+ title = "Image to text generation"
46
+
47
+ demo = gr.Interface.load(
48
+ fn=get_quote,
49
+ inputs = "image",
50
+ outputs=['text'],
51
+ title = title,
52
+ description = "Import an image file and get text from it" ,
53
+ cache_examples=False
54
+
55
+ )
56
+ if __name__ == "__main__":
57
+ demo.launch()