File size: 971 Bytes
3df0647
 
40ce253
3df0647
8f2a47a
9576ce8
0b3cb65
9576ce8
40ce253
9576ce8
9e7cf86
9576ce8
 
 
 
 
 
 
 
 
 
 
 
 
 
 
40ce253
3df0647
9576ce8
 
3df0647
9576ce8
3df0647
 
9576ce8
3df0647
42c5999
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
import os
os.system("pip install git+https://github.com/openai/whisper.git")

import gradio as gr
import whisper
model = whisper.load_model("large")

import time

def transcribe(audio):
    # split the audio for 30 seconds
    audio = whisper.load_audio(audio)
    audio = whisper.pad_or_trim(audio)

    # make log-Mel spectrogram and move to device as the model
    mel = whisper.log_mel_spectrogram(audio).to(model.device)

    # detect the spoken language
    _, probs = model.detect_language(mel)
    print(f"Detected language: {max(probs, key=probs.get)}")

    # decoding the audio
    options = whisper.DecodingOptions(fp16 = False)
    result = whisper.decode(model, mel, options)
    print(result.text)
    return result.text
    
gr.Interface(
    title = 'Speech to Text with OpenAI (large)', 
    fn=transcribe, 
    inputs=[
        gr.inputs.Audio(source="microphone", type="filepath")
    ],
    outputs=[
        "textbox"
    ],
    live=True).launch()