Spaces:
Runtime error
Runtime error
File size: 1,618 Bytes
4f4ebac 9471ad0 4f4ebac d3f63fd 85d6742 d3f63fd 9471ad0 4f4ebac d3f63fd 9471ad0 4f4ebac d3f63fd 4f4ebac 9471ad0 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 |
import gradio as gr
from transformers import AutoModelForCausalLM, AutoTokenizer
# Load model and tokenizer from Hugging Face
model_name = "iqrabatool/finetuned_LLaMA"
model = AutoModelForCausalLM.from_pretrained(model_name, use_auth_token=True)
tokenizer = AutoTokenizer.from_pretrained(model_name)
def respond(message, system_message, max_tokens, temperature, top_p):
# Generate response
inputs = tokenizer(message, return_tensors="pt", max_length=max_tokens, truncation=True, padding=True)
outputs = model.generate(**inputs, temperature=temperature, top_p=top_p)
response = tokenizer.decode(outputs[0], skip_special_tokens=True)
return response
# Define interface components
additional_inputs = [
gr.Textbox(value="You are a friendly Chatbot.", label="System message"),
gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max new tokens"),
gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"),
gr.Slider(minimum=0.1, maximum=1.0, value=0.95, step=0.05, label="Top-p (nucleus sampling)"),
]
# Create the ChatInterface
demo = gr.Interface(
fn=respond,
inputs=["text", "text", "number", "number", "number"],
outputs="text",
title="Health Bot",
description="A chatbot for health-related inquiries.",
article="The Health Bot assists users with health-related questions and provides information based on a pre-trained language model.",
examples=[["What are the symptoms of COVID-19?", "Health Bot: COVID-19 symptoms include..."]],
additional_inputs=additional_inputs
)
if __name__ == "__main__":
demo.launch()
|