iqrabatool commited on
Commit
236508f
·
verified ·
1 Parent(s): ec61044

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +10 -8
app.py CHANGED
@@ -7,8 +7,10 @@ token = os.environ.get('HF_TOKEN')
7
 
8
  # Load model and tokenizer from Hugging Face
9
  model_name = "iqrabatool/finetuned_LLaMA"
10
- model = AutoModelForCausalLM.from_pretrained(model_name, token=os.environ.get('HF_TOKEN'))
11
- tokenizer = AutoTokenizer.from_pretrained(model_name, token=os.environ.get('HF_TOKEN'))
 
 
12
 
13
  def respond(message, system_message, max_tokens, temperature, top_p):
14
  # Generate response
@@ -17,21 +19,21 @@ def respond(message, system_message, max_tokens, temperature, top_p):
17
  response = tokenizer.decode(outputs[0], skip_special_tokens=True)
18
  return response
19
 
20
- # Define interface components
21
  additional_inputs = [
22
  gr.Textbox(value="You are a friendly Chatbot.", label="System message"),
23
- gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max new tokens"),
24
- gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"),
25
- gr.Slider(minimum=0.1, maximum=1.0, value=0.95, step=0.05, label="Top-p (nucleus sampling)"),
26
  ]
27
 
28
- # Create the ChatInterface
29
  demo = gr.Interface(
30
  fn=respond,
31
  inputs=["text", "text", "number", "number", "number"],
32
  outputs="text",
33
  title="Health Bot",
34
- description="A chatbot for health-related inquiries.",
35
  article="The Health Bot assists users with health-related questions and provides information based on a pre-trained language model.",
36
  examples=[["What are the symptoms of COVID-19?", "Health Bot: COVID-19 symptoms include..."]],
37
  additional_inputs=additional_inputs
 
7
 
8
  # Load model and tokenizer from Hugging Face
9
  model_name = "iqrabatool/finetuned_LLaMA"
10
+
11
+ # Define a smaller subset of the model or load a smaller version if available
12
+ model = AutoModelForCausalLM.from_pretrained(model_name, token=token)
13
+ tokenizer = AutoTokenizer.from_pretrained(model_name, token=token)
14
 
15
  def respond(message, system_message, max_tokens, temperature, top_p):
16
  # Generate response
 
19
  response = tokenizer.decode(outputs[0], skip_special_tokens=True)
20
  return response
21
 
22
+ # Define simplified interface components
23
  additional_inputs = [
24
  gr.Textbox(value="You are a friendly Chatbot.", label="System message"),
25
+ gr.Slider(minimum=1, maximum=512, value=256, step=1, label="Max new tokens"), # Limit max tokens
26
+ gr.Slider(minimum=0.1, maximum=2.0, value=0.7, step=0.1, label="Temperature"), # Reduce temperature range
27
+ gr.Slider(minimum=0.1, maximum=0.9, value=0.5, step=0.05, label="Top-p (nucleus sampling)"), # Reduce top-p range
28
  ]
29
 
30
+ # Create the simplified ChatInterface
31
  demo = gr.Interface(
32
  fn=respond,
33
  inputs=["text", "text", "number", "number", "number"],
34
  outputs="text",
35
  title="Health Bot",
36
+ description="A simplified chatbot for health-related inquiries.",
37
  article="The Health Bot assists users with health-related questions and provides information based on a pre-trained language model.",
38
  examples=[["What are the symptoms of COVID-19?", "Health Bot: COVID-19 symptoms include..."]],
39
  additional_inputs=additional_inputs