SemanticPalette / util.py
ironjr's picture
added first version
6fedad3
raw
history blame
10.7 kB
# Copyright (c) 2024 Jaerin Lee
# Permission is hereby granted, free of charge, to any person obtaining a copy
# of this software and associated documentation files (the "Software"), to deal
# in the Software without restriction, including without limitation the rights
# to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
# copies of the Software, and to permit persons to whom the Software is
# furnished to do so, subject to the following conditions:
# The above copyright notice and this permission notice shall be included in all
# copies or substantial portions of the Software.
# THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
# IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
# FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
# AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
# LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
# OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
# SOFTWARE.
import concurrent.futures
import time
from typing import Any, Callable, List, Tuple, Union
from PIL import Image
import numpy as np
import torch
import torch.nn.functional as F
import torch.cuda.amp as amp
import torchvision.transforms as T
import torchvision.transforms.functional as TF
def seed_everything(seed: int) -> None:
torch.manual_seed(seed)
torch.cuda.manual_seed(seed)
torch.backends.cudnn.deterministic = True
torch.backends.cudnn.benchmark = True
def get_cutoff(cutoff: float = None, scale: float = None) -> float:
if cutoff is not None:
return cutoff
if scale is not None and cutoff is None:
return 0.5 / scale
raise ValueError('Either one of `cutoff`, or `scale` should be specified.')
def get_scale(cutoff: float = None, scale: float = None) -> float:
if scale is not None:
return scale
if cutoff is not None and scale is None:
return 0.5 / cutoff
raise ValueError('Either one of `cutoff`, or `scale` should be specified.')
def filter_2d_by_kernel_1d(x: torch.Tensor, k: torch.Tensor) -> torch.Tensor:
assert len(k.shape) in (1,), 'Kernel size should be one of (1,).'
# assert len(k.shape) in (1, 2), 'Kernel size should be one of (1, 2).'
b, c, h, w = x.shape
ks = k.shape[-1]
k = k.view(1, 1, -1).repeat(c, 1, 1)
x = x.permute(0, 2, 1, 3)
x = x.reshape(b * h, c, w)
x = F.pad(x, (ks // 2, (ks - 1) // 2), mode='replicate')
x = F.conv1d(x, k, groups=c)
x = x.reshape(b, h, c, w).permute(0, 3, 2, 1).reshape(b * w, c, h)
x = F.pad(x, (ks // 2, (ks - 1) // 2), mode='replicate')
x = F.conv1d(x, k, groups=c)
x = x.reshape(b, w, c, h).permute(0, 2, 3, 1)
return x
def filter_2d_by_kernel_2d(x: torch.Tensor, k: torch.Tensor) -> torch.Tensor:
assert len(k.shape) in (2, 3), 'Kernel size should be one of (2, 3).'
x = F.pad(x, (
k.shape[-2] // 2, (k.shape[-2] - 1) // 2,
k.shape[-1] // 2, (k.shape[-1] - 1) // 2,
), mode='replicate')
b, c, _, _ = x.shape
if len(k.shape) == 2 or (len(k.shape) == 3 and k.shape[0] == 1):
k = k.view(1, 1, *k.shape[-2:]).repeat(c, 1, 1, 1)
x = F.conv2d(x, k, groups=c)
elif len(k.shape) == 3:
assert k.shape[0] == b, \
'The number of kernels should match the batch size.'
k = k.unsqueeze(1)
x = F.conv2d(x.permute(1, 0, 2, 3), k, groups=b).permute(1, 0, 2, 3)
return x
@amp.autocast(False)
def filter_by_kernel(
x: torch.Tensor,
k: torch.Tensor,
is_batch: bool = False,
) -> torch.Tensor:
k_dim = len(k.shape)
if k_dim == 1 or k_dim == 2 and is_batch:
return filter_2d_by_kernel_1d(x, k)
elif k_dim == 2 or k_dim == 3 and is_batch:
return filter_2d_by_kernel_2d(x, k)
else:
raise ValueError('Kernel size should be one of (1, 2, 3).')
def gen_gauss_lowpass_filter_2d(
std: torch.Tensor,
window_size: int = None,
) -> torch.Tensor:
# Gaussian kernel size is odd in order to preserve the center.
if window_size is None:
window_size = (
2 * int(np.ceil(3 * std.max().detach().cpu().numpy())) + 1)
y = torch.arange(
window_size, dtype=std.dtype, device=std.device
).view(-1, 1).repeat(1, window_size)
grid = torch.stack((y.t(), y), dim=-1)
grid -= 0.5 * (window_size - 1) # (W, W)
var = (std * std).unsqueeze(-1).unsqueeze(-1)
distsq = (grid * grid).sum(dim=-1).unsqueeze(0).repeat(*std.shape, 1, 1)
k = torch.exp(-0.5 * distsq / var)
k /= k.sum(dim=(-2, -1), keepdim=True)
return k
def gaussian_lowpass(
x: torch.Tensor,
std: Union[float, Tuple[float], torch.Tensor] = None,
cutoff: Union[float, torch.Tensor] = None,
scale: Union[float, torch.Tensor] = None,
) -> torch.Tensor:
if std is None:
cutoff = get_cutoff(cutoff, scale)
std = 0.5 / (np.pi * cutoff)
if isinstance(std, (float, int)):
std = (std, std)
if isinstance(std, torch.Tensor):
"""Using nn.functional.conv2d with Gaussian kernels built in runtime is
80% faster than transforms.functional.gaussian_blur for individual
items.
(in GPU); However, in CPU, the result is exactly opposite. But you
won't gonna run this on CPU, right?
"""
if len(list(s for s in std.shape if s != 1)) >= 2:
raise NotImplementedError(
'Anisotropic Gaussian filter is not currently available.')
# k.shape == (B, W, W).
k = gen_gauss_lowpass_filter_2d(std=std.view(-1))
if k.shape[0] == 1:
return filter_by_kernel(x, k[0], False)
else:
return filter_by_kernel(x, k, True)
else:
# Gaussian kernel size is odd in order to preserve the center.
window_size = tuple(2 * int(np.ceil(3 * s)) + 1 for s in std)
return TF.gaussian_blur(x, window_size, std)
def blend(
fg: Union[torch.Tensor, Image.Image],
bg: Union[torch.Tensor, Image.Image],
mask: Union[torch.Tensor, Image.Image],
std: float = 0.0,
) -> Image.Image:
if not isinstance(fg, torch.Tensor):
fg = T.ToTensor()(fg)
if not isinstance(bg, torch.Tensor):
bg = T.ToTensor()(bg)
if not isinstance(mask, torch.Tensor):
mask = (T.ToTensor()(mask) < 0.5).float()[:1]
if std > 0:
mask = gaussian_lowpass(mask[None], std)[0].clip_(0, 1)
return T.ToPILImage()(fg * mask + bg * (1 - mask))
def get_panorama_views(
panorama_height: int,
panorama_width: int,
window_size: int = 64,
) -> tuple[List[Tuple[int]], torch.Tensor]:
stride = window_size // 2
is_horizontal = panorama_width > panorama_height
num_blocks_height = (panorama_height - window_size + stride - 1) // stride + 1
num_blocks_width = (panorama_width - window_size + stride - 1) // stride + 1
total_num_blocks = num_blocks_height * num_blocks_width
half_fwd = torch.linspace(0, 1, (window_size + 1) // 2)
half_rev = half_fwd.flip(0)
if window_size % 2 == 1:
half_rev = half_rev[1:]
c = torch.cat((half_fwd, half_rev))
one = torch.ones_like(c)
f = c.clone()
f[:window_size // 2] = 1
b = c.clone()
b[-(window_size // 2):] = 1
h = [one] if num_blocks_height == 1 else [f] + [c] * (num_blocks_height - 2) + [b]
w = [one] if num_blocks_width == 1 else [f] + [c] * (num_blocks_width - 2) + [b]
views = []
masks = torch.zeros(total_num_blocks, panorama_height, panorama_width) # (n, h, w)
for i in range(total_num_blocks):
hi, wi = i // num_blocks_width, i % num_blocks_width
h_start = hi * stride
h_end = min(h_start + window_size, panorama_height)
w_start = wi * stride
w_end = min(w_start + window_size, panorama_width)
views.append((h_start, h_end, w_start, w_end))
h_width = h_end - h_start
w_width = w_end - w_start
masks[i, h_start:h_end, w_start:w_end] = h[hi][:h_width, None] * w[wi][None, :w_width]
# Sum of the mask weights at each pixel `masks.sum(dim=1)` must be unity.
return views, masks[None] # (1, n, h, w)
def shift_to_mask_bbox_center(im: torch.Tensor, mask: torch.Tensor, reverse: bool = False) -> List[int]:
h, w = mask.shape[-2:]
device = mask.device
mask = mask.reshape(-1, h, w)
# assert mask.shape[0] == im.shape[0]
h_occupied = mask.sum(dim=-2) > 0
w_occupied = mask.sum(dim=-1) > 0
l = torch.argmax(h_occupied * torch.arange(w, 0, -1).to(device), 1, keepdim=True).cpu()
r = torch.argmax(h_occupied * torch.arange(w).to(device), 1, keepdim=True).cpu()
t = torch.argmax(w_occupied * torch.arange(h, 0, -1).to(device), 1, keepdim=True).cpu()
b = torch.argmax(w_occupied * torch.arange(h).to(device), 1, keepdim=True).cpu()
tb = (t + b + 1) // 2
lr = (l + r + 1) // 2
shifts = (tb - (h // 2), lr - (w // 2))
shifts = torch.cat(shifts, dim=1) # (p, 2)
if reverse:
shifts = shifts * -1
return torch.stack([i.roll(shifts=s.tolist(), dims=(-2, -1)) for i, s in zip(im, shifts)], dim=0)
class Streamer:
def __init__(self, fn: Callable, ema_alpha: float = 0.9) -> None:
self.fn = fn
self.ema_alpha = ema_alpha
self.executor = concurrent.futures.ThreadPoolExecutor(max_workers=1)
self.future = self.executor.submit(fn)
self.image = None
self.prev_exec_time = 0
self.ema_exec_time = 0
@property
def throughput(self) -> float:
return 1.0 / self.ema_exec_time if self.ema_exec_time else float('inf')
def timed_fn(self) -> Any:
start = time.time()
res = self.fn()
end = time.time()
self.prev_exec_time = end - start
self.ema_exec_time = self.ema_exec_time * self.ema_alpha + self.prev_exec_time * (1 - self.ema_alpha)
return res
def __call__(self) -> Any:
if self.future.done() or self.image is None:
# get the result (the new image) and start a new task
image = self.future.result()
self.future = self.executor.submit(self.timed_fn)
self.image = image
return image
else:
# if self.fn() is not ready yet, use the previous image
# NOTE: This assumes that we have access to a previously generated image here.
# If there's no previous image (i.e., this is the first invocation), you could fall
# back to some default image or handle it differently based on your requirements.
return self.image