import gradio as gr from huggingface_hub import InferenceClient import os from pinecone import Pinecone, ServerlessSpec from sentence_transformers import SentenceTransformer pc = Pinecone(api_key=os.getenv("PINECONE_API_KEY")) index = pc.Index("medicine") """ For more information on `huggingface_hub` Inference API support, please check the docs: https://huggingface.co/docs/huggingface_hub/v0.22.2/en/guides/inference """ client = InferenceClient("meta-llama/Meta-Llama-3-8B-Instruct") embedding_model = SentenceTransformer( "nomic-ai/nomic-embed-text-v1", trust_remote_code=True ) def retriever(message, embedding_model): print("Encoding query") encoded_message = embedding_model.encode(message) print("Fetching most similar doc") matches = index.query( vector=encoded_message.tolist(), top_k=1, include_metadata=True ) print(f"Most similar chunk: {matches['matches'][0]['metadata']['original_text']}") retrieved_data = matches["matches"][0]["metadata"]["original_text"] return retrieved_data def respond( message, history: list[tuple[str, str]], system_message, max_tokens, temperature, top_p, ): messages = [{"role": "system", "content": system_message}] for val in history: if val[0]: messages.append({"role": "user", "content": val[0]}) if val[1]: messages.append({"role": "assistant", "content": val[1]}) messages.append({"role": "user", "content": message}) print("Retrieving docs") retrieved_data = retriever(message, embedding_model) # Added as context to LLM messages.append({"role": "user", "content": retrieved_data}) response = "" print("Completion request") for message in client.chat_completion( messages, max_tokens=max_tokens, stream=True, temperature=temperature, top_p=top_p, ): token = message.choices[0].delta.content response += token yield response """ For information on how to customize the ChatInterface, peruse the gradio docs: https://www.gradio.app/docs/chatinterface """ with open("prompt.txt") as file: prompt = file.read() demo = gr.ChatInterface( respond, additional_inputs=[ gr.Textbox(value=prompt, label="System message"), gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max new tokens"), gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"), gr.Slider( minimum=0.1, maximum=1.0, value=0.95, step=0.05, label="Top-p (nucleus sampling)", ), ], ) if __name__ == "__main__": demo.launch()