File size: 6,434 Bytes
5e8301a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
dc6fd47
5e8301a
 
 
dc6fd47
5e8301a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
import torch
import torch.nn as  nn
from torch.nn import functional as F

with open('data/input.txt', 'r', encoding='utf-8') as f:
  text = f.read()

chars = sorted(list(set(text)))
vocab_size = len(chars)

stoi = { ch:i for i,ch in enumerate(chars) }
itos = { i:ch for i,ch in enumerate(chars) }

#encoder and decoder for characters
# can be replaced by a tokenizer like TikToken
encode  = lambda s: [stoi[c] for c in s]
decode = lambda l: ''.join([itos[i] for i in l])


# encode input data as torch tensors

data = torch.tensor(encode(text), dtype = torch.long)

#split data into train and validation pairs

n  = int(0.9*len(data))
train_data = data[:n]
test_data = data[n:]

# create mini batches for multiple chunks of text that are stacked up in a single tensor
# for parallel processing of data

torch.manual_seed(1337)
batch_size = 4 # how many sequences processed in parallel
block_size = 8 # maximum context length for predictions

def get_batch(split):
  data= train_data if split == 'train' else test_data
  ix = torch.randint(len(data) - block_size, (batch_size,))
  # take 1d tensors as a row
  x = torch.stack([data[i:i+block_size] for i in ix])
  y = torch.stack([data[i+1:i+block_size+1] for i in ix])
  return x,y




###### Hyperparameters ########
batch_size = 64
block_size = 256
max_iters = 5000
eval_interval = 300
learning_rate = 3e-4

eval_iters = 200
device = 'cuda' if torch.cuda.is_available() else 'cpu'
n_embed = 384
n_head = 6
n_layer =6
dropout = 0.2
###### Hyperparameters ########


@torch.no_grad()
def estimate_loss(model):
    out = {}
    model.eval()
    for split in ['train', 'val']:
        losses = torch.zeros(eval_iters)
        for k in range(eval_iters):
            X, Y = get_batch(split)
            logits, loss = model(X, Y)
            losses[k] = loss.item()
        out[split] = losses.mean()
    model.train()
    return out



class Head(nn.Module):

  def __init__(self, head_size):
    super().__init__()

    self.key = nn.Linear(n_embed, head_size, bias = False)
    self.query = nn.Linear(n_embed, head_size, bias = False)
    self.value = nn.Linear(n_embed, head_size, bias = False)
    self.register_buffer('tril', torch.tril(torch.ones(block_size,block_size)))

    self.dropout = nn.Dropout(dropout)

  def forward(self,x):
    B,T,C = x.shape
    k = self.key(x) # (B,T,C)
    q = self.query(x) # (B,T,C)

    # perform scaled attention
    wei = q @ k.transpose(-2,-1) * C**(-0.5) # (B,T,C) @ (B,C,T) -> (B,T,T)
    wei = wei.masked_fill(self.tril[:T,:T] ==0, float('-inf')) # (B,T,T)
    wei = F.softmax(wei,dim=-1)

    wei = self.dropout(wei)

    v = self.value(x)
    out = wei @ v
    return out


class MultiHeadAttention(nn.Module):

  def __init__ (self, num_heads, head_size):
    super().__init__()

    self.heads = nn.ModuleList([Head(head_size) for _ in range(num_heads)])
    self.proj = nn.Linear(num_heads * head_size, n_embed)
    self.dropout = nn.Dropout(dropout)

  def forward(self, x):
    out =  torch.cat([h(x) for h in self.heads], dim=-1)
    out =  self.dropout(self.proj(out))
    return out


class FeedForward(nn.Module):
  """ a simple linear layer followed by a non-linearity """

  def __init__(self, n_embed):
    super().__init__()
    self.net = nn.Sequential(
        nn.Linear(n_embed, 4 * n_embed),
        nn.ReLU(), # for residual connections i guess
        nn.Linear(4 * n_embed, n_embed),
        nn.Dropout(dropout),
    )

  def forward(self, x):
    return self.net(x)


class Block(nn.Module):
  """ Transformer block: communication followed by computation """

  def __init__(self, n_embed, n_head):

    super().__init__()
    head_size = n_embed // n_head

    self.sa = MultiHeadAttention(n_head, head_size)
    self.ffwd = FeedForward(n_embed)
    # makes it unit gaussian at initiation
    self.ln1 = nn.LayerNorm(n_embed)
    self.ln2 = nn.LayerNorm(n_embed)

  def forward(self, x):
    # residual connections
    x = x + self.sa(self.ln1(x))
    x= x + self.ffwd(self.ln2(x))
    return x


class BigramLM(nn.Module):

  def __init__(self):
    super().__init__()

    self.token_embedding_table = nn.Embedding(vocab_size, n_embed)
    self.position_embedding_table = nn.Embedding(block_size, n_embed)
    self.blocks = nn.Sequential(*[Block(n_embed, n_head = n_head) for _ in range(n_layer)])
    self.ln_f = nn.LayerNorm(n_embed)
    self.lm_head = nn.Linear(n_embed, vocab_size)

  def forward(self, idx, targets = None):
    B,T = idx.shape
    idx = idx.cuda() if torch.cuda.is_available() else idx
    tok_emb = self.token_embedding_table(idx)
    pos_emb = self.position_embedding_table(torch.arange(T,device = device))
    x = tok_emb + pos_emb
    x= self.blocks(x)
    x = self.ln_f(x)
    logits = self.lm_head(x)

    if targets is None:
      loss = None
    else:
      B,T,C = logits.shape
      logits = logits.view(B*T, C)
      logits = logits.cuda() if torch.cuda.is_available() else logits
      targets = targets.view(B*T)
      
      targets = targets.cuda() if torch.cuda.is_available() else targets
      loss = F.cross_entropy(logits, targets)

    return logits, loss

  def generate(self, idx, max_new_tokens, temperature=1.0):

    for _ in range(max_new_tokens):
      # crop idx so that positional embedding doesnt run out of scope
      idx_cond = idx[:, -block_size:]
      # get predictions
      logits, loss = self(idx_cond)
      # pick the last time step
      logits = logits[:,-1,:] / temperature
      # apply softmax to get probabilities
      probs = F.softmax(logits,dim=-1)
      # sample from the distribution (pick the best)
      idx_next = torch.multinomial(probs, num_samples=1)
      # GPT like output
      yield decode(idx_next[0].tolist())
      # append sampled index to running sequence
      idx = torch.cat((idx, idx_next), dim=1)
      
    yield decode(idx_next[0].tolist())

def train():

  model = BigramLM()
  m = model.to(device)
  # create a PyTorch optimizer
  optimizer = torch.optim.AdamW(model.parameters(),lr=1e-3)

  for iter in range(max_iters):

    if iter % eval_interval == 0:
      losses = estimate_loss(model)
      print(f"step {iter}: train loss {losses['train']:.4f}, val loss {losses['val']:.4f}")

    xb, yb = get_batch('train')
    logits, loss = model(xb,yb)
    optimizer.zero_grad(set_to_none=True)
    loss.backward()
    optimizer.step()
    torch.save(model, 'saved_model.pth')

if __name__ == "__main__":
  train()