Spaces:
Sleeping
Sleeping
File size: 6,434 Bytes
5e8301a dc6fd47 5e8301a dc6fd47 5e8301a |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 |
import torch
import torch.nn as nn
from torch.nn import functional as F
with open('data/input.txt', 'r', encoding='utf-8') as f:
text = f.read()
chars = sorted(list(set(text)))
vocab_size = len(chars)
stoi = { ch:i for i,ch in enumerate(chars) }
itos = { i:ch for i,ch in enumerate(chars) }
#encoder and decoder for characters
# can be replaced by a tokenizer like TikToken
encode = lambda s: [stoi[c] for c in s]
decode = lambda l: ''.join([itos[i] for i in l])
# encode input data as torch tensors
data = torch.tensor(encode(text), dtype = torch.long)
#split data into train and validation pairs
n = int(0.9*len(data))
train_data = data[:n]
test_data = data[n:]
# create mini batches for multiple chunks of text that are stacked up in a single tensor
# for parallel processing of data
torch.manual_seed(1337)
batch_size = 4 # how many sequences processed in parallel
block_size = 8 # maximum context length for predictions
def get_batch(split):
data= train_data if split == 'train' else test_data
ix = torch.randint(len(data) - block_size, (batch_size,))
# take 1d tensors as a row
x = torch.stack([data[i:i+block_size] for i in ix])
y = torch.stack([data[i+1:i+block_size+1] for i in ix])
return x,y
###### Hyperparameters ########
batch_size = 64
block_size = 256
max_iters = 5000
eval_interval = 300
learning_rate = 3e-4
eval_iters = 200
device = 'cuda' if torch.cuda.is_available() else 'cpu'
n_embed = 384
n_head = 6
n_layer =6
dropout = 0.2
###### Hyperparameters ########
@torch.no_grad()
def estimate_loss(model):
out = {}
model.eval()
for split in ['train', 'val']:
losses = torch.zeros(eval_iters)
for k in range(eval_iters):
X, Y = get_batch(split)
logits, loss = model(X, Y)
losses[k] = loss.item()
out[split] = losses.mean()
model.train()
return out
class Head(nn.Module):
def __init__(self, head_size):
super().__init__()
self.key = nn.Linear(n_embed, head_size, bias = False)
self.query = nn.Linear(n_embed, head_size, bias = False)
self.value = nn.Linear(n_embed, head_size, bias = False)
self.register_buffer('tril', torch.tril(torch.ones(block_size,block_size)))
self.dropout = nn.Dropout(dropout)
def forward(self,x):
B,T,C = x.shape
k = self.key(x) # (B,T,C)
q = self.query(x) # (B,T,C)
# perform scaled attention
wei = q @ k.transpose(-2,-1) * C**(-0.5) # (B,T,C) @ (B,C,T) -> (B,T,T)
wei = wei.masked_fill(self.tril[:T,:T] ==0, float('-inf')) # (B,T,T)
wei = F.softmax(wei,dim=-1)
wei = self.dropout(wei)
v = self.value(x)
out = wei @ v
return out
class MultiHeadAttention(nn.Module):
def __init__ (self, num_heads, head_size):
super().__init__()
self.heads = nn.ModuleList([Head(head_size) for _ in range(num_heads)])
self.proj = nn.Linear(num_heads * head_size, n_embed)
self.dropout = nn.Dropout(dropout)
def forward(self, x):
out = torch.cat([h(x) for h in self.heads], dim=-1)
out = self.dropout(self.proj(out))
return out
class FeedForward(nn.Module):
""" a simple linear layer followed by a non-linearity """
def __init__(self, n_embed):
super().__init__()
self.net = nn.Sequential(
nn.Linear(n_embed, 4 * n_embed),
nn.ReLU(), # for residual connections i guess
nn.Linear(4 * n_embed, n_embed),
nn.Dropout(dropout),
)
def forward(self, x):
return self.net(x)
class Block(nn.Module):
""" Transformer block: communication followed by computation """
def __init__(self, n_embed, n_head):
super().__init__()
head_size = n_embed // n_head
self.sa = MultiHeadAttention(n_head, head_size)
self.ffwd = FeedForward(n_embed)
# makes it unit gaussian at initiation
self.ln1 = nn.LayerNorm(n_embed)
self.ln2 = nn.LayerNorm(n_embed)
def forward(self, x):
# residual connections
x = x + self.sa(self.ln1(x))
x= x + self.ffwd(self.ln2(x))
return x
class BigramLM(nn.Module):
def __init__(self):
super().__init__()
self.token_embedding_table = nn.Embedding(vocab_size, n_embed)
self.position_embedding_table = nn.Embedding(block_size, n_embed)
self.blocks = nn.Sequential(*[Block(n_embed, n_head = n_head) for _ in range(n_layer)])
self.ln_f = nn.LayerNorm(n_embed)
self.lm_head = nn.Linear(n_embed, vocab_size)
def forward(self, idx, targets = None):
B,T = idx.shape
idx = idx.cuda() if torch.cuda.is_available() else idx
tok_emb = self.token_embedding_table(idx)
pos_emb = self.position_embedding_table(torch.arange(T,device = device))
x = tok_emb + pos_emb
x= self.blocks(x)
x = self.ln_f(x)
logits = self.lm_head(x)
if targets is None:
loss = None
else:
B,T,C = logits.shape
logits = logits.view(B*T, C)
logits = logits.cuda() if torch.cuda.is_available() else logits
targets = targets.view(B*T)
targets = targets.cuda() if torch.cuda.is_available() else targets
loss = F.cross_entropy(logits, targets)
return logits, loss
def generate(self, idx, max_new_tokens, temperature=1.0):
for _ in range(max_new_tokens):
# crop idx so that positional embedding doesnt run out of scope
idx_cond = idx[:, -block_size:]
# get predictions
logits, loss = self(idx_cond)
# pick the last time step
logits = logits[:,-1,:] / temperature
# apply softmax to get probabilities
probs = F.softmax(logits,dim=-1)
# sample from the distribution (pick the best)
idx_next = torch.multinomial(probs, num_samples=1)
# GPT like output
yield decode(idx_next[0].tolist())
# append sampled index to running sequence
idx = torch.cat((idx, idx_next), dim=1)
yield decode(idx_next[0].tolist())
def train():
model = BigramLM()
m = model.to(device)
# create a PyTorch optimizer
optimizer = torch.optim.AdamW(model.parameters(),lr=1e-3)
for iter in range(max_iters):
if iter % eval_interval == 0:
losses = estimate_loss(model)
print(f"step {iter}: train loss {losses['train']:.4f}, val loss {losses['val']:.4f}")
xb, yb = get_batch('train')
logits, loss = model(xb,yb)
optimizer.zero_grad(set_to_none=True)
loss.backward()
optimizer.step()
torch.save(model, 'saved_model.pth')
if __name__ == "__main__":
train()
|