Spaces:
Sleeping
Sleeping
Saif Rehman Nasir
commited on
Commit
·
705eec3
1
Parent(s):
8ca4f8d
Add UI interface code
Browse files
app.py
CHANGED
@@ -1,7 +1,35 @@
|
|
1 |
import gradio as gr
|
|
|
|
|
2 |
|
3 |
-
|
4 |
-
return "Hello world!"
|
5 |
|
6 |
-
|
7 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
import gradio as gr
|
2 |
+
import torch
|
3 |
+
from model import BigramLM, encode, decode
|
4 |
|
5 |
+
device = 'cuda' if torch.cuda.is_available() else 'cpu'
|
|
|
6 |
|
7 |
+
model = torch.load('saved_model.pth', map_location= torch.device(device))
|
8 |
+
|
9 |
+
def generate_text(context, num_of_tokens, temperature=1.0):
|
10 |
+
if context == None or context == '':
|
11 |
+
idx = torch.zeros((1,1), dtype=torch.long)
|
12 |
+
else:
|
13 |
+
idx = torch.tensor(encode(context), dtype=torch.long).unsqueeze(0)
|
14 |
+
|
15 |
+
return decode(model.generate(idx, max_new_tokens=num_of_tokens,temperature=temperature)[0].tolist())
|
16 |
+
|
17 |
+
|
18 |
+
with gr.Blocks as demo:
|
19 |
+
gr.HTML("<h1 align='center'> Shakespeare Text Generator</h1>")
|
20 |
+
|
21 |
+
context = gr.Textbox(label = "Enter context (optional)")
|
22 |
+
|
23 |
+
with gr.Row():
|
24 |
+
num_of_tokens = gr.Number( label = "Max tokens to generate", value = 100)
|
25 |
+
tmp = gr.Slider(label= "Temperature", minimum = 0.0, maximum = 1.0, value = 1.0 )
|
26 |
+
|
27 |
+
inputs = [
|
28 |
+
context,
|
29 |
+
num_of_tokens,tmp
|
30 |
+
]
|
31 |
+
generate_btn = gr.Button(value="Generate")
|
32 |
+
outputs = [gr.Textbox(label= "Generated text")]
|
33 |
+
generate_btn.click(fn = generate_text, inputs= inputs, outputs= outputs)
|
34 |
+
|
35 |
+
demo.launch()
|
model.py
CHANGED
@@ -206,7 +206,7 @@ class BigramLM(nn.Module):
|
|
206 |
# sample from the distribution (pick the best)
|
207 |
idx_next = torch.multinomial(probs, num_samples=1)
|
208 |
# GPT like output
|
209 |
-
print(decode(idx_next[0].tolist()), end='')
|
210 |
# append sampled index to running sequence
|
211 |
idx = torch.cat((idx, idx_next), dim=1)
|
212 |
|
|
|
206 |
# sample from the distribution (pick the best)
|
207 |
idx_next = torch.multinomial(probs, num_samples=1)
|
208 |
# GPT like output
|
209 |
+
#print(decode(idx_next[0].tolist()), end='')
|
210 |
# append sampled index to running sequence
|
211 |
idx = torch.cat((idx, idx_next), dim=1)
|
212 |
|