Spaces:
Sleeping
Sleeping
Saif Rehman Nasir
commited on
Commit
·
f8e3be7
1
Parent(s):
71c03ca
Revert streaming logic
Browse files
app.py
CHANGED
@@ -6,13 +6,13 @@ device = 'cuda' if torch.cuda.is_available() else 'cpu'
|
|
6 |
|
7 |
model = torch.load('saved_model.pth', map_location= torch.device(device), weights_only=False)
|
8 |
|
9 |
-
|
10 |
-
|
11 |
-
|
12 |
-
|
13 |
-
|
14 |
|
15 |
-
|
16 |
|
17 |
|
18 |
|
@@ -29,10 +29,6 @@ with gr.Blocks() as demo:
|
|
29 |
context,
|
30 |
num_of_tokens,tmp
|
31 |
]
|
32 |
-
if context == None or context == '':
|
33 |
-
idx = torch.zeros((1,1), dtype=torch.long)
|
34 |
-
else:
|
35 |
-
idx = torch.tensor(encode(context), dtype=torch.long).unsqueeze(0)
|
36 |
generate_btn = gr.Button(value="Generate")
|
37 |
outputs = [gr.Textbox(label= "Generated text: ")]
|
38 |
generate_btn.click(fn = model.generate, inputs= inputs, outputs= outputs)
|
|
|
6 |
|
7 |
model = torch.load('saved_model.pth', map_location= torch.device(device), weights_only=False)
|
8 |
|
9 |
+
def generate_text(context, num_of_tokens, temperature=1.0):
|
10 |
+
if context == None or context == '':
|
11 |
+
idx = torch.zeros((1,1), dtype=torch.long)
|
12 |
+
else:
|
13 |
+
idx = torch.tensor(encode(context), dtype=torch.long).unsqueeze(0)
|
14 |
|
15 |
+
yield model.generate(idx, max_new_tokens=num_of_tokens,temperature=temperature)
|
16 |
|
17 |
|
18 |
|
|
|
29 |
context,
|
30 |
num_of_tokens,tmp
|
31 |
]
|
|
|
|
|
|
|
|
|
32 |
generate_btn = gr.Button(value="Generate")
|
33 |
outputs = [gr.Textbox(label= "Generated text: ")]
|
34 |
generate_btn.click(fn = model.generate, inputs= inputs, outputs= outputs)
|
model.py
CHANGED
@@ -206,11 +206,11 @@ class BigramLM(nn.Module):
|
|
206 |
# sample from the distribution (pick the best)
|
207 |
idx_next = torch.multinomial(probs, num_samples=1)
|
208 |
# GPT like output
|
209 |
-
yield decode(idx_next[0].tolist())
|
210 |
# append sampled index to running sequence
|
211 |
idx = torch.cat((idx, idx_next), dim=1)
|
212 |
|
213 |
-
|
214 |
|
215 |
def train():
|
216 |
|
|
|
206 |
# sample from the distribution (pick the best)
|
207 |
idx_next = torch.multinomial(probs, num_samples=1)
|
208 |
# GPT like output
|
209 |
+
# yield decode(idx_next[0].tolist())
|
210 |
# append sampled index to running sequence
|
211 |
idx = torch.cat((idx, idx_next), dim=1)
|
212 |
|
213 |
+
return idx
|
214 |
|
215 |
def train():
|
216 |
|