import torch import torch.nn as nn from torch.nn import functional as F with open('data/input.txt', 'r', encoding='utf-8') as f: text = f.read() chars = sorted(list(set(text))) vocab_size = len(chars) stoi = { ch:i for i,ch in enumerate(chars) } itos = { i:ch for i,ch in enumerate(chars) } #encoder and decoder for characters # can be replaced by a tokenizer like TikToken encode = lambda s: [stoi[c] for c in s] decode = lambda l: ''.join([itos[i] for i in l]) # encode input data as torch tensors data = torch.tensor(encode(text), dtype = torch.long) #split data into train and validation pairs n = int(0.9*len(data)) train_data = data[:n] test_data = data[n:] # create mini batches for multiple chunks of text that are stacked up in a single tensor # for parallel processing of data torch.manual_seed(1337) batch_size = 4 # how many sequences processed in parallel block_size = 8 # maximum context length for predictions def get_batch(split): data= train_data if split == 'train' else test_data ix = torch.randint(len(data) - block_size, (batch_size,)) # take 1d tensors as a row x = torch.stack([data[i:i+block_size] for i in ix]) y = torch.stack([data[i+1:i+block_size+1] for i in ix]) return x,y ###### Hyperparameters ######## batch_size = 64 block_size = 256 max_iters = 5000 eval_interval = 300 learning_rate = 3e-4 eval_iters = 200 device = 'cuda' if torch.cuda.is_available() else 'cpu' n_embed = 384 n_head = 6 n_layer =6 dropout = 0.2 ###### Hyperparameters ######## @torch.no_grad() def estimate_loss(model): out = {} model.eval() for split in ['train', 'val']: losses = torch.zeros(eval_iters) for k in range(eval_iters): X, Y = get_batch(split) logits, loss = model(X, Y) losses[k] = loss.item() out[split] = losses.mean() model.train() return out class Head(nn.Module): def __init__(self, head_size): super().__init__() self.key = nn.Linear(n_embed, head_size, bias = False) self.query = nn.Linear(n_embed, head_size, bias = False) self.value = nn.Linear(n_embed, head_size, bias = False) self.register_buffer('tril', torch.tril(torch.ones(block_size,block_size))) self.dropout = nn.Dropout(dropout) def forward(self,x): B,T,C = x.shape k = self.key(x) # (B,T,C) q = self.query(x) # (B,T,C) # perform scaled attention wei = q @ k.transpose(-2,-1) * C**(-0.5) # (B,T,C) @ (B,C,T) -> (B,T,T) wei = wei.masked_fill(self.tril[:T,:T] ==0, float('-inf')) # (B,T,T) wei = F.softmax(wei,dim=-1) wei = self.dropout(wei) v = self.value(x) out = wei @ v return out class MultiHeadAttention(nn.Module): def __init__ (self, num_heads, head_size): super().__init__() self.heads = nn.ModuleList([Head(head_size) for _ in range(num_heads)]) self.proj = nn.Linear(num_heads * head_size, n_embed) self.dropout = nn.Dropout(dropout) def forward(self, x): out = torch.cat([h(x) for h in self.heads], dim=-1) out = self.dropout(self.proj(out)) return out class FeedForward(nn.Module): """ a simple linear layer followed by a non-linearity """ def __init__(self, n_embed): super().__init__() self.net = nn.Sequential( nn.Linear(n_embed, 4 * n_embed), nn.ReLU(), # for residual connections i guess nn.Linear(4 * n_embed, n_embed), nn.Dropout(dropout), ) def forward(self, x): return self.net(x) class Block(nn.Module): """ Transformer block: communication followed by computation """ def __init__(self, n_embed, n_head): super().__init__() head_size = n_embed // n_head self.sa = MultiHeadAttention(n_head, head_size) self.ffwd = FeedForward(n_embed) # makes it unit gaussian at initiation self.ln1 = nn.LayerNorm(n_embed) self.ln2 = nn.LayerNorm(n_embed) def forward(self, x): # residual connections x = x + self.sa(self.ln1(x)) x= x + self.ffwd(self.ln2(x)) return x class BigramLM(nn.Module): def __init__(self): super().__init__() self.token_embedding_table = nn.Embedding(vocab_size, n_embed) self.position_embedding_table = nn.Embedding(block_size, n_embed) self.blocks = nn.Sequential(*[Block(n_embed, n_head = n_head) for _ in range(n_layer)]) self.ln_f = nn.LayerNorm(n_embed) self.lm_head = nn.Linear(n_embed, vocab_size) def forward(self, idx, targets = None): B,T = idx.shape idx = idx.cuda() if torch.cuda.is_available() else idx tok_emb = self.token_embedding_table(idx) pos_emb = self.position_embedding_table(torch.arange(T,device = device)) x = tok_emb + pos_emb x= self.blocks(x) x = self.ln_f(x) logits = self.lm_head(x) if targets is None: loss = None else: B,T,C = logits.shape logits = logits.view(B*T, C) logits = logits.cuda() if torch.cuda.is_available() else logits targets = targets.view(B*T) targets = targets.cuda() if torch.cuda.is_available() else targets loss = F.cross_entropy(logits, targets) return logits, loss def generate(self, idx, max_new_tokens, temperature=1.0): for _ in range(max_new_tokens): # crop idx so that positional embedding doesnt run out of scope idx_cond = idx[:, -block_size:] # get predictions logits, loss = self(idx_cond) # pick the last time step logits = logits[:,-1,:] / temperature # apply softmax to get probabilities probs = F.softmax(logits,dim=-1) # sample from the distribution (pick the best) idx_next = torch.multinomial(probs, num_samples=1) # GPT like output yield decode(idx_next[0].tolist()) # append sampled index to running sequence idx = torch.cat((idx, idx_next), dim=1) yield decode(idx_next[0].tolist()) def train(): model = BigramLM() m = model.to(device) # create a PyTorch optimizer optimizer = torch.optim.AdamW(model.parameters(),lr=1e-3) for iter in range(max_iters): if iter % eval_interval == 0: losses = estimate_loss(model) print(f"step {iter}: train loss {losses['train']:.4f}, val loss {losses['val']:.4f}") xb, yb = get_batch('train') logits, loss = model(xb,yb) optimizer.zero_grad(set_to_none=True) loss.backward() optimizer.step() torch.save(model, 'saved_model.pth') if __name__ == "__main__": train()