Spaces:
Sleeping
Sleeping
import streamlit as st | |
import pandas as pd | |
import plotly.express as px | |
import altair as alt | |
import folium | |
from folium.plugins import HeatMap, MarkerCluster | |
from streamlit_folium import st_folium | |
def load_and_preprocess_data(file_path): | |
# Read the data | |
df = pd.read_csv(file_path) | |
# Basic preprocessing | |
df = df.drop(['X', 'Y'], axis=1) | |
df.dropna(subset=['Incidentid', 'DateTime', 'Year', 'Latitude', 'Longitude'], inplace=True) | |
# Convert Year to int | |
df['Year'] = df['Year'].astype(int) | |
# Fill missing values | |
numeric = ['Age_Drv1', 'Age_Drv2'] | |
for col in numeric: | |
df[col].fillna(df[col].median(), inplace=True) | |
categorical = ['Gender_Drv1', 'Violation1_Drv1', 'AlcoholUse_Drv1', 'DrugUse_Drv1', | |
'Gender_Drv2', 'Violation1_Drv2', 'AlcoholUse_Drv2', 'DrugUse_Drv2', | |
'Unittype_Two', 'Traveldirection_Two', 'Unitaction_Two', 'CrossStreet'] | |
for col in categorical: | |
df[col].fillna('Unknown', inplace=True) | |
# Remove invalid ages | |
df = df[ | |
(df['Age_Drv1'] <= 90) & | |
(df['Age_Drv2'] <= 90) & | |
(df['Age_Drv1'] >= 16) & | |
(df['Age_Drv2'] >= 16) | |
] | |
# Create age groups | |
bins = [15, 25, 35, 45, 55, 65, 90] | |
labels = ['16-25', '26-35', '36-45', '46-55', '56-65', '65+'] | |
df['Age_Group_Drv1'] = pd.cut(df['Age_Drv1'], bins=bins, labels=labels) | |
df['Age_Group_Drv2'] = pd.cut(df['Age_Drv2'], bins=bins, labels=labels) | |
return df | |
def create_severity_violation_chart(df, age_group=None): | |
# Apply age group filter if selected | |
if age_group != 'All Ages': | |
df = df[(df['Age_Group_Drv1'] == age_group) | (df['Age_Group_Drv2'] == age_group)] | |
# Combine violations from both drivers | |
violations_1 = df.groupby(['Violation1_Drv1', 'Injuryseverity']).size().reset_index(name='count') | |
violations_2 = df.groupby(['Violation1_Drv2', 'Injuryseverity']).size().reset_index(name='count') | |
violations_1.columns = ['Violation', 'Severity', 'count'] | |
violations_2.columns = ['Violation', 'Severity', 'count'] | |
violations = pd.concat([violations_1, violations_2]) | |
violations = violations.groupby(['Violation', 'Severity'])['count'].sum().reset_index() | |
# Create visualization | |
fig = px.bar( | |
violations, | |
x='Violation', | |
y='count', | |
color='Severity', | |
title=f'Crash Severity Distribution by Violation Type - {age_group}', | |
labels={'count': 'Number of Incidents', 'Violation': 'Violation Type'}, | |
height=600 | |
) | |
fig.update_layout( | |
xaxis_tickangle=-45, | |
legend_title='Severity Level', | |
barmode='stack' | |
) | |
return fig | |
def get_top_violations(df, age_group): | |
# Calculate total incidents for the age group | |
if age_group == 'All Ages': | |
total_incidents = len(df) | |
# Get violations for all ages | |
violations = pd.concat([ | |
df['Violation1_Drv1'].value_counts(), | |
df['Violation1_Drv2'].value_counts() | |
]).groupby(level=0).sum() | |
else: | |
# Filter for specific age group | |
filtered_df = df[ | |
(df['Age_Group_Drv1'] == age_group) | | |
(df['Age_Group_Drv2'] == age_group) | |
] | |
total_incidents = len(filtered_df) | |
# Get violations for specific age group | |
violations = pd.concat([ | |
filtered_df['Violation1_Drv1'].value_counts(), | |
filtered_df['Violation1_Drv2'].value_counts() | |
]).groupby(level=0).sum() | |
# Convert to DataFrame and format | |
violations_df = violations.reset_index() | |
violations_df.columns = ['Violation Type', 'Count'] | |
# Sort by Count in descending order | |
violations_df = violations_df.sort_values('Count', ascending=False) | |
# Calculate percentage of total incidents | |
violations_df['Percentage'] = (violations_df['Count'] / total_incidents * 100).round(2) | |
violations_df['Percentage'] = violations_df['Percentage'].map('{:.2f}%'.format) | |
return violations_df.head() | |
def create_map(df, selected_year): | |
filtered_df = df[df['Year'] == selected_year] | |
m = folium.Map( | |
location=[33.4255, -111.9400], | |
zoom_start=12, | |
control_scale=True, | |
tiles='CartoDB positron' | |
) | |
marker_cluster = MarkerCluster().add_to(m) | |
for _, row in filtered_df.iterrows(): | |
folium.Marker( | |
location=[row['Latitude'], row['Longitude']], | |
popup=f"Accident at {row['Longitude']}, {row['Latitude']}<br>Date: {row['DateTime']}<br>Severity: {row['Injuryseverity']}", | |
icon=folium.Icon(color='red') | |
).add_to(marker_cluster) | |
heat_data = filtered_df[['Latitude', 'Longitude']].values.tolist() | |
HeatMap(heat_data, radius=15, max_zoom=13, min_opacity=0.3).add_to(m) | |
return m | |
def create_injuries_fatalities_chart(crash_data, unit_type): | |
# 5th visualization title | |
# st.header("5. Total Injuries and Fatalities by Month") | |
# Filter rows where we have valid data for all necessary columns | |
crash_data = crash_data[['DateTime', 'Totalinjuries', 'Totalfatalities', 'Unittype_One', 'Unittype_Two']].dropna() | |
# Convert "DateTime" to datetime type | |
crash_data['DateTime'] = pd.to_datetime(crash_data['DateTime'], errors='coerce') | |
crash_data['Month'] = crash_data['DateTime'].dt.month_name() | |
# sort months in order | |
month_order = ['January', 'February', 'March', 'April', 'May', 'June', 'July', 'August', 'September', 'October', 'November', 'December'] | |
crash_data['Month'] = pd.Categorical(crash_data['Month'], categories=month_order, ordered=True) | |
# Dropdown for Unit Type selection | |
# Dropdown for Unit Type selection | |
# st.sidebar.selectbox("Select Unit Type", options=['Total'] + crash_data['Unittype_One'].dropna().unique().tolist()) # previous location of dropdown in sidebar | |
# unit_type = st.selectbox("Select Unit Type", options=['Total'] + crash_data['Unittype_One'].dropna().unique().tolist()) | |
# unit_type_pairs = set() | |
# for _, row in crash_data[['Unittype_One', 'Unittype_Two']].dropna().iterrows(): | |
# if row['Unittype_One'] != 'Driverless' or row['Unittype_Two'] != 'Driverless': | |
# pair = ' vs '.join(sorted([row['Unittype_One'], row['Unittype_Two']])) | |
# unit_type_pairs.add(pair) | |
# # unit_type_pairs = list(unit_type_pairs) # modified as below to sort the dropdown options in alphabetical order | |
# unit_type_pairs = sorted(list(unit_type_pairs)) | |
# unit_type = st.selectbox("Select Unit Type Pair", options=['Total'] + unit_type_pairs) | |
# Filter data based on the selected unit type | |
if unit_type == 'Total': | |
filtered_data = crash_data | |
else: | |
unit_one, unit_two = unit_type.split(' vs ') | |
filtered_data = crash_data[((crash_data['Unittype_One'] == unit_one) & (crash_data['Unittype_Two'] == unit_two)) | | |
((crash_data['Unittype_One'] == unit_two) & (crash_data['Unittype_Two'] == unit_one))] | |
# Group data by month and calculate total injuries and fatalities | |
monthly_sum = filtered_data.groupby('Month').agg({'Totalinjuries': 'sum', 'Totalfatalities': 'sum'}).reset_index() | |
# Reshape the data for easier plotting | |
injuries = monthly_sum[['Month', 'Totalinjuries']].rename(columns={'Totalinjuries': 'Value'}) | |
injuries['Measure'] = 'Total Injuries' | |
fatalities = monthly_sum[['Month', 'Totalfatalities']].rename(columns={'Totalfatalities': 'Value'}) | |
fatalities['Measure'] = 'Total Fatalities' | |
combined_data = pd.concat([injuries, fatalities]) | |
# Originally tried to use bar chart but switched to line chart for better trend visualization | |
# alt.Chart(monthly_sum).mark_bar().encode( | |
# x=alt.X('Month', sort=month_order, title='Month'), | |
# y=alt.Y('Totalinjuries', title='Total Injuries', axis=alt.Axis(titleColor='blue', labelColor='blue', tickColor='blue')), | |
# color=alt.value('blue'), | |
# tooltip=['Month', 'Totalinjuries'] | |
# ).properties( | |
# title='Total Injuries and Fatalities by Month', | |
# width=300, | |
# height=300 | |
# ) + alt.Chart(monthly_sum).mark_bar().encode( | |
# x=alt.X('Month', sort=month_order, title='Month'), | |
# y=alt.Y('Totalfatalities', title='Total Fatalities', axis=alt.Axis(titleColor='red', labelColor='red', tickColor='red')), | |
# color=alt.value('red'), | |
# tooltip=['Month', 'Totalfatalities'] | |
# ) | |
# Tried to figure out how to plot a legend using altair | |
# line_chart = alt.Chart(monthly_sum).mark_line(point=True).encode( | |
# x=alt.X('Month', sort=month_order, title='Month'), | |
# y=alt.Y('Totalinjuries', title='Total Injuries & Fatalities', axis=alt.Axis(titleColor='black')), | |
# color=alt.value('blue'), | |
# tooltip=['Month', 'Totalinjuries'] | |
# ).properties( | |
# title=f'Total Injuries and Fatalities by Month for Unit Type Pair: {unit_type}', | |
# width=600, | |
# height=400 | |
# ) + alt.Chart(monthly_sum).mark_line(point=True).encode( | |
# x=alt.X('Month', sort=month_order, title='Month'), | |
# y=alt.Y('Totalfatalities', axis=alt.Axis(titleColor='red')), | |
# color=alt.value('red'), | |
# tooltip=['Month', 'Totalfatalities'] | |
# ).configure_legend( | |
# titleFontSize=14, | |
# labelFontSize=12, | |
# titleColor='black', | |
# labelColor='black' | |
# ) | |
# Plot line chart | |
line_chart = alt.Chart(combined_data).mark_line(point=True).encode( | |
x=alt.X('Month:N', sort=month_order, title='Month'), | |
y=alt.Y('Value:Q', title='Total Injuries & Fatalities'), | |
color=alt.Color('Measure:N', title='', scale=alt.Scale(domain=['Total Injuries', 'Total Fatalities'], range=['blue', 'red'])), | |
tooltip=['Month', 'Measure:N', 'Value:Q'] | |
).properties( | |
title=f'Total Injuries and Fatalities by Month for Unit Type Pair: {unit_type}', | |
width=600, | |
height=400 | |
) | |
# # Combine the charts (trying to make legend) | |
# combined_chart = alt.layer(line_chart_injuries, line_chart_fatalities).properties( | |
# title=f'Total Injuries and Fatalities by Month for Unit Type Pair: {unit_type}', | |
# width=600, | |
# height=400 | |
# ).configure_legend( | |
# titleFontSize=14, | |
# labelFontSize=12, | |
# titleColor='black', | |
# labelColor='black' | |
# ) | |
return line_chart | |
def create_crash_trend_chart(df, weather=None): | |
if weather and weather != 'All Conditions': | |
df = df[df['Weather'] == weather] | |
# Group data by year and count unique Incident IDs | |
trend_data = df.groupby('Year')['Incidentid'].nunique().reset_index() | |
trend_data.columns = ['Year', 'Crash Count'] | |
# Create line graph | |
fig = px.line( | |
trend_data, | |
x='Year', | |
y='Crash Count', | |
title=f'Crash Trend Over Time ({weather})', | |
labels={'Year': 'Year', 'Crash Count': 'Number of Unique Crashes'}, | |
markers=True, | |
height=600 | |
) | |
fig.update_traces(line=dict(width=2), marker=dict(size=8)) | |
fig.update_layout(legend_title_text='Trend') | |
return fig | |
def create_category_distribution_chart(df, selected_category, selected_year): | |
# Filter by selected year | |
if selected_year != 'All Years': | |
df = df[df['Year'] == int(selected_year)] | |
# Group by selected category and Injury Severity | |
grouped_data = df.groupby([selected_category, 'Injuryseverity']).size().reset_index(name='Count') | |
# Calculate percentages for each category value | |
total_counts = grouped_data.groupby(selected_category)['Count'].transform('sum') | |
grouped_data['Percentage'] = (grouped_data['Count'] / total_counts * 100).round(2) | |
# Create the stacked bar chart using Plotly | |
fig = px.bar( | |
grouped_data, | |
x=selected_category, | |
y='Count', | |
color='Injuryseverity', | |
text='Percentage', | |
title=f'Distribution of Incidents by {selected_category} ({selected_year})', | |
labels={'Count': 'Number of Incidents', selected_category: 'Category'}, | |
height=600, | |
) | |
# Customize the chart appearance | |
fig.update_traces(texttemplate='%{text}%', textposition='inside') | |
fig.update_layout( | |
barmode='stack', | |
xaxis_tickangle=-45, | |
legend_title='Injury Severity', | |
margin=dict(t=50, b=100), | |
) | |
return fig | |
def main(): | |
st.set_page_config(page_title="Terrific Tempe Traffic", layout="wide") | |
st.markdown(""" | |
<style> | |
.reportview-container { | |
font-size: 20px; | |
} | |
h1, h2, h3, h4, h5, h6 { | |
font-size: 150%; | |
} | |
p { | |
font-size: 125%; | |
} | |
</style> | |
""", unsafe_allow_html=True) | |
st.markdown(""" | |
<style> | |
.title { | |
text-align: center; | |
padding: 25px; | |
} | |
</style> | |
""", unsafe_allow_html=True) | |
st.markdown("<div class='title'><h1> Accident Analysis for City of Tempe,Arizona </h1></div>", unsafe_allow_html=True) | |
st.markdown(""" | |
**Team Members:** | |
- Janhavi Tushar Zarapkar ([email protected]) | |
- Hangyue Zhang ([email protected]) | |
- Andrew Nam ([email protected]) | |
- Nirmal Attarde ([email protected]) | |
- Maanas Sandeep Agrawal ([email protected]) | |
""") | |
st.markdown(""" | |
# Introduction to the Traffic Accident Dataset | |
This dataset contains detailed information about traffic accidents in the city of **Tempe**. It includes various attributes of the accidents, such as the severity of injuries, the demographics of the drivers involved, the locations of the incidents, and the conditions at the time of the accidents. The dataset covers accidents that occurred over several years, with data on factors like **weather conditions**, **road surface conditions**, the **time of day**, and the type of **violations** (e.g., alcohol or drug use) that may have contributed to the accident. | |
The data was sourced from **Tempe City's traffic incident reports** and provides a comprehensive view of the factors influencing road safety and accident severity in the city. By analyzing this dataset, we can gain insights into the key contributors to traffic incidents and uncover trends that could help improve traffic safety measures, urban planning, and law enforcement policies in the city. | |
""") | |
# Load data | |
df = load_and_preprocess_data('1.08_Crash_Data_Report_(detail).csv') | |
if 'Weather' not in df.columns: | |
df['Weather'] = 'Unknown' | |
# Create tabs for different visualizations | |
tab1, tab2, tab3, tab4, tab5 = st.tabs([ | |
"Crash Trend", | |
"Crash Statistics", | |
"Distribution by Category", | |
"Crash Injuries/Fatalities", | |
"Crash Map" | |
]) | |
with tab1: | |
# Weather condition filter | |
weather = ['All Conditions'] + sorted(df['Weather'].unique()) | |
selected_weather = st.selectbox('Select Weather Condition:', weather) | |
trend_col, desc_col = st.columns([7, 3]) | |
with trend_col: | |
trend_fig = create_crash_trend_chart(df, selected_weather) | |
trend_fig.update_layout( | |
height=800, | |
width=None, | |
margin=dict(l=50, r=50, t=50, b=50) | |
) | |
st.plotly_chart(trend_fig, use_container_width=True) | |
with desc_col: | |
st.markdown(""" | |
## **Crash Trend Over Time** | |
This interactive line chart visualizes the trend of unique traffic crashes over the years, optionally filtered by weather conditions. It highlights how crash frequency changes over time, helping identify trends and potential contributing factors. | |
**Key Features:** | |
* **Time Trend Analysis**: Displays the total number of unique crashes for each year, showing long-term patterns. | |
* **Weather Filter**: Users can filter the data by weather conditions (e.g., "Rainy", "Sunny") to analyze how weather impacts crash trends. | |
* **Interactive Tooltips**: Hovering over data points reveals the exact crash count for each year, providing detailed insights. | |
**Color Scheme and Design:** | |
* **Line and Markers**: A smooth line connects data points, with prominent markers for each year to highlight trends clearly. | |
* **Dynamic Title**: The chart updates its title to reflect the selected weather condition or "All Conditions" for the overall trend. | |
**Insights:** | |
This chart helps uncover: | |
* Annual fluctuations in crash incidents. | |
* Correlations between weather conditions and crash frequencies. | |
* Historical patterns that can guide future safety measures and urban planning decisions | |
""") | |
with tab2: | |
# Age group selection | |
age_groups = ['All Ages', '16-25', '26-35', '36-45', '46-55', '56-65', '65+'] | |
selected_age = st.selectbox('Select Age Group:', age_groups) | |
chart_col, desc_col = st.columns([7, 3]) | |
with chart_col: | |
# Create and display chart | |
fig = create_severity_violation_chart(df, selected_age) | |
st.plotly_chart(fig, use_container_width=True) | |
# Display statistics | |
if selected_age == 'All Ages': | |
total_incidents = len(df) | |
else: | |
total_incidents = len(df[ | |
(df['Age_Group_Drv1'] == selected_age) | | |
(df['Age_Group_Drv2'] == selected_age) | |
]) | |
# Create two columns for statistics | |
col1, col2 = st.columns(2) | |
with col1: | |
st.markdown(f"### Total Incidents") | |
st.markdown(f"**{total_incidents:,}** incidents for {selected_age}") | |
with col2: | |
st.markdown("### Top Violations") | |
top_violations = get_top_violations(df, selected_age) | |
st.table(top_violations) | |
with desc_col: | |
st.markdown(""" | |
## Severity of Violations Across Age Groups | |
This section provides an interactive visualization of crash severities linked to specific violation types, segmented by driver age groups. It enables a comprehensive analysis of how age influences crash severity and violation trends. | |
**Key Features:** | |
1. **Age Group Analysis**: | |
* Select specific age groups (e.g., "16-25", "65+") or analyze all ages to explore correlations between age, violation type, and crash severity. | |
* Understand how different age groups are involved in various types of violations. | |
2. **Violation Breakdown**: | |
* Examine the most frequent violations contributing to traffic accidents for each age group. | |
* View detailed statistics showing the distribution of violation types. | |
**Insights:** | |
* Identifies high-risk behaviors within specific age groups, such as reckless driving in younger drivers or impaired driving in older groups. | |
* Highlights which violations are associated with more severe outcomes, aiding targeted safety interventions and public awareness campaigns. | |
* Supports data-driven decision making for age-specific traffic safety programs. | |
""") | |
with tab3: | |
# Dropdown for category selection | |
categories = [ | |
'Collisionmanner', | |
'Lightcondition', | |
'Weather', | |
'SurfaceCondition', | |
'AlcoholUse_Drv1', | |
'Gender_Drv1', | |
] | |
selected_category = st.selectbox("Select Category:", categories) | |
# Dropdown for year selection | |
years = ['All Years'] + sorted(df['Year'].dropna().unique().astype(int).tolist()) | |
selected_year = st.selectbox("Select Year:", years) | |
chart_col, desc_col = st.columns([7, 3]) | |
with chart_col: | |
distribution_chart = create_category_distribution_chart(df, selected_category, selected_year) | |
distribution_chart.update_layout( | |
height=800, | |
width=None, | |
margin=dict(l=50, r=50, t=50, b=50) | |
) | |
st.plotly_chart(distribution_chart, use_container_width=True) | |
with desc_col: | |
st.markdown(f""" | |
## Distribution of Incidents by {selected_category} | |
This visualization explores the distribution of traffic incidents across various categories, such as Collision Manner, Weather, Surface Condition, Alcohol Use, and Driver Gender. Each bar represents a specific category value (e.g., "Male" or "Female" for Gender), and the bars are divided into segments based on Injury Severity (e.g., Minor, Moderate, Serious, Fatal). | |
**Key Features:** | |
* Interactive Filters: Select a category and filter by year to analyze trends over time. | |
* Insightful Tooltips: Hover over each segment to view the exact count and percentage of incidents for a given severity level. | |
* Comparative Analysis: Quickly identify how different conditions or behaviors correlate with injury severity. | |
This chart provides actionable insights into factors contributing to traffic incidents and their outcomes, helping stakeholders target interventions and improve road safety. | |
""") | |
with tab4: | |
# Dropdown for Unit Type selection | |
unit_type_pairs = set() | |
for _, row in df[['Unittype_One', 'Unittype_Two']].dropna().iterrows(): | |
if row['Unittype_One'] != 'Driverless' or row['Unittype_Two'] != 'Driverless': | |
pair = ' vs '.join(sorted([row['Unittype_One'], row['Unittype_Two']])) | |
unit_type_pairs.add(pair) | |
unit_type_pairs = sorted(list(unit_type_pairs)) | |
unit_type = st.selectbox("Select Unit Type Pair", options=['Total'] + unit_type_pairs) | |
chart_col, desc_col = st.columns([7, 3]) | |
with chart_col: | |
injuries_fatalities_chart = create_injuries_fatalities_chart(df, unit_type) | |
injuries_fatalities_chart = injuries_fatalities_chart.properties( | |
height=800 | |
) | |
st.altair_chart(injuries_fatalities_chart, use_container_width=True) | |
with desc_col: | |
st.markdown(""" | |
## Injuries and Fatalities Trends | |
This line chart shows the **total number of injuries and fatalities by month for the selected unit type pair**. The visualization helps identify seasonal patterns and critical trends in traffic incidents involving specific unit types. | |
**Key Features:** | |
* **Injuries Trend** (Blue Line) | |
- Tracks monthly injury counts | |
- Shows seasonal variations | |
- Identifies peak incident periods | |
* **Fatalities Trend** (Red Line) | |
- Monitors monthly fatality counts | |
- Generally lower than injuries | |
- Highlights critical safety concerns | |
* **Interactive Selection** | |
- Filter by specific unit type pairs | |
- Compare different vehicle combinations | |
- View overall trends across all types | |
**Applications:** | |
- Identify high-risk months | |
- Guide seasonal safety measures | |
- Inform emergency response planning | |
- Support targeted intervention strategies | |
This visualization aids stakeholders in developing effective safety measures and resource allocation strategies throughout the year. | |
""") | |
with tab5: | |
years = sorted(df['Year'].unique()) | |
selected_year = st.selectbox('Select Year:', years) | |
map_col, desc_col = st.columns([7, 3]) | |
with map_col: | |
map_placeholder = st.empty() | |
with map_placeholder: | |
m = create_map(df, selected_year) | |
map_data = st_folium( | |
m, | |
width=None, | |
height=800, | |
key=f"map_{selected_year}", | |
returned_objects=["null_drawing"] | |
) | |
with desc_col: | |
st.markdown(""" | |
### Traffic Crash Location Map | |
This interactive map visualizes traffic accidents in Tempe for the selected year. It combines **marker clustering** and a **heatmap** to show: | |
1. **Accident Markers**: Red markers indicate individual accidents, with popups displaying the coordinates, date/time, and severity of each incident. | |
2. **Heatmap**: The heatmap highlights accident hotspots with colors ranging from blue (low frequency) to yellow (moderate) and red (high frequency), showing areas with more frequent accidents. | |
**Key Features:** | |
* **Interactive Year Selection**: Users can select a year to view accidents for that specific time. | |
* **Accident Patterns**: The map reveals accident-prone areas and severity patterns, helping identify dangerous locations. | |
**Color Scheme:** | |
* **Red**: Individual accident markers. | |
* **Blue to Red**: Heatmap colors indicate accident frequency, from low (blue) to high (red). | |
This map provides insights into accident trends and can help guide safety improvements in the city. | |
""") | |
st.markdown("---") | |
# Add TODO section title | |
st.markdown("# To-Do List for Part 3") | |
st.markdown("For the final project part 3, we plan to create two pairs of linked interactive visualizations for analyzing traffic accident data as follows:") | |
st.markdown(""" | |
### Planned Visualizations | |
1. **Severity-Location Analysis** | |
* A bar chart displaying accident severity counts | |
* A map visualizing accident locations with marker clusters and heatmaps | |
* Interactions in one visualization (e.g., clicking a bar in the chart) will dynamically update the other | |
* Enables seamless exploration of data | |
2. **Violation-Severity Analysis** | |
* An interactive bar and pie chart system | |
* Shows the distribution of severity levels for selected violation types | |
* Clicking a specific bar from the "Crash Severity Distribution by Violation Type" bar plot | |
* Dynamically updates a pie plot showing detailed distribution of the chosen violation type | |
* Based on the selected age group | |
""") | |
st.markdown("---") | |
# Add conclusion section | |
st.markdown("# FP2 Conclusion") | |
st.markdown(""" | |
In FP2, we created interactive visualizations to analyze traffic accident data, focusing on trends, contributing factors, and safety implications. Each visualization provides specific insights and helps users make data-driven decisions to improve road safety. | |
- **Crash Trend Over Time**: An interactive line chart showing annual crash patterns with an optional weather filter, helping identify trends and weather-related correlations. | |
- **Severity of Violations Across Age Groups**: Visualizes crash severities by violation types and driver age groups, aiding targeted safety campaigns and interventions. | |
- **Distribution of Incidents by Collision Manner**: A bar chart linking traffic incidents with factors like surface conditions and gender, offering insights into injury severity trends. | |
- **Injuries and Fatalities Trends**: Displays monthly injuries and fatalities, highlighting seasonal variations and high-risk periods, with unit-type filtering for detailed analysis. | |
- **Traffic Crash Location Map**: Combines marker clusters and heatmaps to reveal accident hotspots and severity patterns, guiding safety improvements and urban planning. | |
In Part 3, we plan to enhance interactivity by linking visualizations, such as dynamically updating a map and bar chart for a more seamless data exploration experience. | |
These tools empower stakeholders to address risks, implement safety measures, and prioritize infrastructure upgrades for safer roads. | |
""") | |
if __name__ == "__main__": | |
main() |