Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -338,7 +338,7 @@ def main():
|
|
338 |
- Hangyue Zhang ([email protected])
|
339 |
- Andrew Nam ([email protected])
|
340 |
- Nirmal Attarde ([email protected])
|
341 |
-
- Maanas Sandeep
|
342 |
""")
|
343 |
|
344 |
|
@@ -399,7 +399,6 @@ def main():
|
|
399 |
|
400 |
with map_col:
|
401 |
# Create and display map
|
402 |
-
st.markdown("### Crash Location Map")
|
403 |
map_placeholder = st.empty()
|
404 |
with map_placeholder:
|
405 |
m = create_map(df, selected_year)
|
@@ -440,7 +439,6 @@ def main():
|
|
440 |
trend_col, desc_col = st.columns([7, 3])
|
441 |
|
442 |
with trend_col:
|
443 |
-
st.markdown("### Crash Trend Over Time")
|
444 |
trend_fig = create_crash_trend_chart(df, selected_weather)
|
445 |
# Update the figure layout for larger size
|
446 |
trend_fig.update_layout(
|
@@ -555,7 +553,6 @@ def main():
|
|
555 |
chart_col, desc_col = st.columns([7, 3])
|
556 |
|
557 |
with chart_col:
|
558 |
-
st.markdown(f"### Distribution of Incidents by {selected_category}")
|
559 |
distribution_chart = create_category_distribution_chart(df, selected_category, selected_year)
|
560 |
# Update the figure layout for larger size
|
561 |
distribution_chart.update_layout(
|
@@ -566,8 +563,8 @@ def main():
|
|
566 |
st.plotly_chart(distribution_chart, use_container_width=True)
|
567 |
|
568 |
with desc_col:
|
569 |
-
st.markdown("""
|
570 |
-
## Distribution by
|
571 |
This visualization explores the distribution of traffic incidents across various categories, such as Collision Manner, Weather, Surface Condition, Alcohol Use, and Driver Gender. Each bar represents a specific category value (e.g., "Male" or "Female" for Gender), and the bars are divided into segments based on Injury Severity (e.g., Minor, Moderate, Serious, Fatal).
|
572 |
|
573 |
**Key features include:**
|
|
|
338 |
- Hangyue Zhang ([email protected])
|
339 |
- Andrew Nam ([email protected])
|
340 |
- Nirmal Attarde ([email protected])
|
341 |
+
- Maanas Sandeep Agrawal ([email protected])
|
342 |
""")
|
343 |
|
344 |
|
|
|
399 |
|
400 |
with map_col:
|
401 |
# Create and display map
|
|
|
402 |
map_placeholder = st.empty()
|
403 |
with map_placeholder:
|
404 |
m = create_map(df, selected_year)
|
|
|
439 |
trend_col, desc_col = st.columns([7, 3])
|
440 |
|
441 |
with trend_col:
|
|
|
442 |
trend_fig = create_crash_trend_chart(df, selected_weather)
|
443 |
# Update the figure layout for larger size
|
444 |
trend_fig.update_layout(
|
|
|
553 |
chart_col, desc_col = st.columns([7, 3])
|
554 |
|
555 |
with chart_col:
|
|
|
556 |
distribution_chart = create_category_distribution_chart(df, selected_category, selected_year)
|
557 |
# Update the figure layout for larger size
|
558 |
distribution_chart.update_layout(
|
|
|
563 |
st.plotly_chart(distribution_chart, use_container_width=True)
|
564 |
|
565 |
with desc_col:
|
566 |
+
st.markdown(f"""
|
567 |
+
## Distribution of Incidents by {selected_category}
|
568 |
This visualization explores the distribution of traffic incidents across various categories, such as Collision Manner, Weather, Surface Condition, Alcohol Use, and Driver Gender. Each bar represents a specific category value (e.g., "Male" or "Female" for Gender), and the bars are divided into segments based on Injury Severity (e.g., Minor, Moderate, Serious, Fatal).
|
569 |
|
570 |
**Key features include:**
|