hyzhang00 commited on
Commit
8f4683a
·
verified ·
1 Parent(s): fb187c0

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +3 -6
app.py CHANGED
@@ -338,7 +338,7 @@ def main():
338
  - Hangyue Zhang ([email protected])
339
  - Andrew Nam ([email protected])
340
  - Nirmal Attarde ([email protected])
341
- - Maanas Sandeep Agrawa ([email protected])
342
  """)
343
 
344
 
@@ -399,7 +399,6 @@ def main():
399
 
400
  with map_col:
401
  # Create and display map
402
- st.markdown("### Crash Location Map")
403
  map_placeholder = st.empty()
404
  with map_placeholder:
405
  m = create_map(df, selected_year)
@@ -440,7 +439,6 @@ def main():
440
  trend_col, desc_col = st.columns([7, 3])
441
 
442
  with trend_col:
443
- st.markdown("### Crash Trend Over Time")
444
  trend_fig = create_crash_trend_chart(df, selected_weather)
445
  # Update the figure layout for larger size
446
  trend_fig.update_layout(
@@ -555,7 +553,6 @@ def main():
555
  chart_col, desc_col = st.columns([7, 3])
556
 
557
  with chart_col:
558
- st.markdown(f"### Distribution of Incidents by {selected_category}")
559
  distribution_chart = create_category_distribution_chart(df, selected_category, selected_year)
560
  # Update the figure layout for larger size
561
  distribution_chart.update_layout(
@@ -566,8 +563,8 @@ def main():
566
  st.plotly_chart(distribution_chart, use_container_width=True)
567
 
568
  with desc_col:
569
- st.markdown("""
570
- ## Distribution by Category
571
  This visualization explores the distribution of traffic incidents across various categories, such as Collision Manner, Weather, Surface Condition, Alcohol Use, and Driver Gender. Each bar represents a specific category value (e.g., "Male" or "Female" for Gender), and the bars are divided into segments based on Injury Severity (e.g., Minor, Moderate, Serious, Fatal).
572
 
573
  **Key features include:**
 
338
  - Hangyue Zhang ([email protected])
339
  - Andrew Nam ([email protected])
340
  - Nirmal Attarde ([email protected])
341
+ - Maanas Sandeep Agrawal ([email protected])
342
  """)
343
 
344
 
 
399
 
400
  with map_col:
401
  # Create and display map
 
402
  map_placeholder = st.empty()
403
  with map_placeholder:
404
  m = create_map(df, selected_year)
 
439
  trend_col, desc_col = st.columns([7, 3])
440
 
441
  with trend_col:
 
442
  trend_fig = create_crash_trend_chart(df, selected_weather)
443
  # Update the figure layout for larger size
444
  trend_fig.update_layout(
 
553
  chart_col, desc_col = st.columns([7, 3])
554
 
555
  with chart_col:
 
556
  distribution_chart = create_category_distribution_chart(df, selected_category, selected_year)
557
  # Update the figure layout for larger size
558
  distribution_chart.update_layout(
 
563
  st.plotly_chart(distribution_chart, use_container_width=True)
564
 
565
  with desc_col:
566
+ st.markdown(f"""
567
+ ## Distribution of Incidents by {selected_category}
568
  This visualization explores the distribution of traffic incidents across various categories, such as Collision Manner, Weather, Surface Condition, Alcohol Use, and Driver Gender. Each bar represents a specific category value (e.g., "Male" or "Female" for Gender), and the bars are divided into segments based on Injury Severity (e.g., Minor, Moderate, Serious, Fatal).
569
 
570
  **Key features include:**