Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -1,30 +1,23 @@
|
|
1 |
import streamlit as st
|
2 |
import pandas as pd
|
3 |
import plotly.express as px
|
4 |
-
import plotly.graph_objects as go
|
5 |
-
import numpy as np
|
6 |
|
7 |
def load_and_preprocess_data(file_path):
|
8 |
# Read the data
|
9 |
df = pd.read_csv(file_path)
|
10 |
|
11 |
-
#
|
12 |
df = df.drop(['X', 'Y'], axis=1)
|
13 |
-
|
14 |
-
# Handle missing values
|
15 |
df.dropna(subset=['Incidentid', 'DateTime', 'Year', 'Latitude', 'Longitude'], inplace=True)
|
16 |
|
17 |
-
# Fill
|
18 |
numeric = ['Age_Drv1', 'Age_Drv2']
|
19 |
for col in numeric:
|
20 |
df[col].fillna(df[col].median(), inplace=True)
|
21 |
-
|
22 |
-
|
23 |
-
|
24 |
-
|
25 |
-
'Gender_Drv2', 'Violation1_Drv2', 'AlcoholUse_Drv2', 'DrugUse_Drv2',
|
26 |
-
'Unittype_Two', 'Traveldirection_Two', 'Unitaction_Two', 'CrossStreet'
|
27 |
-
]
|
28 |
for col in categorical:
|
29 |
df[col].fillna('Unknown', inplace=True)
|
30 |
|
@@ -36,113 +29,73 @@ def load_and_preprocess_data(file_path):
|
|
36 |
(df['Age_Drv2'] >= 16)
|
37 |
]
|
38 |
|
39 |
-
# Create age groups
|
40 |
-
|
41 |
-
|
42 |
-
bins=[15, 25, 35, 45, 55, 65, 90],
|
43 |
-
labels=['16-25', '26-35', '36-45', '46-55', '56-65', '65+']
|
44 |
-
)
|
45 |
|
46 |
-
df['
|
47 |
-
|
48 |
-
bins=[15, 25, 35, 45, 55, 65, 90],
|
49 |
-
labels=['16-25', '26-35', '36-45', '46-55', '56-65', '65+']
|
50 |
-
)
|
51 |
|
52 |
return df
|
53 |
|
54 |
-
def create_severity_violation_chart(df,
|
55 |
-
#
|
56 |
-
if
|
57 |
-
df = df[
|
58 |
-
(df['Age_Group_Drv1'] == selected_age_group) |
|
59 |
-
(df['Age_Group_Drv2'] == selected_age_group)
|
60 |
-
]
|
61 |
-
|
62 |
-
# Create violation categories for both drivers
|
63 |
-
violations_drv1 = df.groupby(['Violation1_Drv1', 'Injuryseverity']).size().reset_index(name='count')
|
64 |
-
violations_drv2 = df.groupby(['Violation1_Drv2', 'Injuryseverity']).size().reset_index(name='count')
|
65 |
|
66 |
# Combine violations from both drivers
|
67 |
-
|
68 |
-
|
69 |
-
|
|
|
|
|
70 |
|
71 |
-
|
72 |
-
|
73 |
|
74 |
-
# Create
|
75 |
fig = px.bar(
|
76 |
-
|
77 |
x='Violation',
|
78 |
y='count',
|
79 |
color='Severity',
|
80 |
-
title=f'
|
81 |
labels={'count': 'Number of Incidents', 'Violation': 'Violation Type'},
|
82 |
height=600
|
83 |
)
|
84 |
|
85 |
-
# Customize the layout
|
86 |
fig.update_layout(
|
87 |
xaxis_tickangle=-45,
|
88 |
-
legend_title='Severity',
|
89 |
-
barmode='stack'
|
90 |
-
showlegend=True
|
91 |
)
|
92 |
|
93 |
return fig
|
94 |
|
95 |
def main():
|
96 |
-
st.title('Traffic Crash Analysis
|
97 |
|
98 |
# Load data
|
99 |
df = load_and_preprocess_data('1.08_Crash_Data_Report_(detail).csv')
|
100 |
|
101 |
-
# Create age
|
102 |
-
|
103 |
-
|
104 |
-
selected_age_group = st.sidebar.selectbox('Select Age Group', age_groups)
|
105 |
-
|
106 |
-
# Create and display the chart
|
107 |
-
if selected_age_group == 'All':
|
108 |
-
fig = create_severity_violation_chart(df)
|
109 |
-
else:
|
110 |
-
fig = create_severity_violation_chart(df, selected_age_group)
|
111 |
|
|
|
|
|
112 |
st.plotly_chart(fig, use_container_width=True)
|
113 |
|
114 |
-
#
|
115 |
-
|
116 |
-
|
117 |
-
# Calculate and display some statistics
|
118 |
-
if selected_age_group == 'All':
|
119 |
-
total_crashes = len(df)
|
120 |
else:
|
121 |
-
|
122 |
-
(df['Age_Group_Drv1'] ==
|
123 |
-
(df['Age_Group_Drv2'] ==
|
124 |
])
|
125 |
|
126 |
-
st.write(f"Total
|
127 |
-
|
128 |
-
# Show top violations
|
129 |
-
st.subheader('Top Violations')
|
130 |
-
if selected_age_group == 'All':
|
131 |
-
violations = pd.concat([
|
132 |
-
df['Violation1_Drv1'].value_counts(),
|
133 |
-
df['Violation1_Drv2'].value_counts()
|
134 |
-
]).groupby(level=0).sum()
|
135 |
-
else:
|
136 |
-
filtered_df = df[
|
137 |
-
(df['Age_Group_Drv1'] == selected_age_group) |
|
138 |
-
(df['Age_Group_Drv2'] == selected_age_group)
|
139 |
-
]
|
140 |
-
violations = pd.concat([
|
141 |
-
filtered_df['Violation1_Drv1'].value_counts(),
|
142 |
-
filtered_df['Violation1_Drv2'].value_counts()
|
143 |
-
]).groupby(level=0).sum()
|
144 |
-
|
145 |
-
st.write(violations.head())
|
146 |
|
147 |
if __name__ == "__main__":
|
148 |
main()
|
|
|
1 |
import streamlit as st
|
2 |
import pandas as pd
|
3 |
import plotly.express as px
|
|
|
|
|
4 |
|
5 |
def load_and_preprocess_data(file_path):
|
6 |
# Read the data
|
7 |
df = pd.read_csv(file_path)
|
8 |
|
9 |
+
# Basic preprocessing
|
10 |
df = df.drop(['X', 'Y'], axis=1)
|
|
|
|
|
11 |
df.dropna(subset=['Incidentid', 'DateTime', 'Year', 'Latitude', 'Longitude'], inplace=True)
|
12 |
|
13 |
+
# Fill missing values
|
14 |
numeric = ['Age_Drv1', 'Age_Drv2']
|
15 |
for col in numeric:
|
16 |
df[col].fillna(df[col].median(), inplace=True)
|
17 |
+
|
18 |
+
categorical = ['Gender_Drv1', 'Violation1_Drv1', 'AlcoholUse_Drv1', 'DrugUse_Drv1',
|
19 |
+
'Gender_Drv2', 'Violation1_Drv2', 'AlcoholUse_Drv2', 'DrugUse_Drv2',
|
20 |
+
'Unittype_Two', 'Traveldirection_Two', 'Unitaction_Two', 'CrossStreet']
|
|
|
|
|
|
|
21 |
for col in categorical:
|
22 |
df[col].fillna('Unknown', inplace=True)
|
23 |
|
|
|
29 |
(df['Age_Drv2'] >= 16)
|
30 |
]
|
31 |
|
32 |
+
# Create age groups
|
33 |
+
bins = [15, 25, 35, 45, 55, 65, 90]
|
34 |
+
labels = ['16-25', '26-35', '36-45', '46-55', '56-65', '65+']
|
|
|
|
|
|
|
35 |
|
36 |
+
df['Age_Group_Drv1'] = pd.cut(df['Age_Drv1'], bins=bins, labels=labels)
|
37 |
+
df['Age_Group_Drv2'] = pd.cut(df['Age_Drv2'], bins=bins, labels=labels)
|
|
|
|
|
|
|
38 |
|
39 |
return df
|
40 |
|
41 |
+
def create_severity_violation_chart(df, age_group=None):
|
42 |
+
# Apply age group filter if selected
|
43 |
+
if age_group != 'All Ages':
|
44 |
+
df = df[(df['Age_Group_Drv1'] == age_group) | (df['Age_Group_Drv2'] == age_group)]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
45 |
|
46 |
# Combine violations from both drivers
|
47 |
+
violations_1 = df.groupby(['Violation1_Drv1', 'Injuryseverity']).size().reset_index(name='count')
|
48 |
+
violations_2 = df.groupby(['Violation1_Drv2', 'Injuryseverity']).size().reset_index(name='count')
|
49 |
+
|
50 |
+
violations_1.columns = ['Violation', 'Severity', 'count']
|
51 |
+
violations_2.columns = ['Violation', 'Severity', 'count']
|
52 |
|
53 |
+
violations = pd.concat([violations_1, violations_2])
|
54 |
+
violations = violations.groupby(['Violation', 'Severity'])['count'].sum().reset_index()
|
55 |
|
56 |
+
# Create visualization
|
57 |
fig = px.bar(
|
58 |
+
violations,
|
59 |
x='Violation',
|
60 |
y='count',
|
61 |
color='Severity',
|
62 |
+
title=f'Crash Severity Distribution by Violation Type - {age_group}',
|
63 |
labels={'count': 'Number of Incidents', 'Violation': 'Violation Type'},
|
64 |
height=600
|
65 |
)
|
66 |
|
|
|
67 |
fig.update_layout(
|
68 |
xaxis_tickangle=-45,
|
69 |
+
legend_title='Severity Level',
|
70 |
+
barmode='stack'
|
|
|
71 |
)
|
72 |
|
73 |
return fig
|
74 |
|
75 |
def main():
|
76 |
+
st.title('Traffic Crash Analysis')
|
77 |
|
78 |
# Load data
|
79 |
df = load_and_preprocess_data('1.08_Crash_Data_Report_(detail).csv')
|
80 |
|
81 |
+
# Create simple dropdown for age groups
|
82 |
+
age_groups = ['All Ages', '16-25', '26-35', '36-45', '46-55', '56-65', '65+']
|
83 |
+
selected_age = st.selectbox('Select Age Group:', age_groups)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
84 |
|
85 |
+
# Create and display chart
|
86 |
+
fig = create_severity_violation_chart(df, selected_age)
|
87 |
st.plotly_chart(fig, use_container_width=True)
|
88 |
|
89 |
+
# Display basic statistics
|
90 |
+
if selected_age == 'All Ages':
|
91 |
+
total_incidents = len(df)
|
|
|
|
|
|
|
92 |
else:
|
93 |
+
total_incidents = len(df[
|
94 |
+
(df['Age_Group_Drv1'] == selected_age) |
|
95 |
+
(df['Age_Group_Drv2'] == selected_age)
|
96 |
])
|
97 |
|
98 |
+
st.write(f"Total incidents for {selected_age}: {total_incidents:,}")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
99 |
|
100 |
if __name__ == "__main__":
|
101 |
main()
|