File size: 6,442 Bytes
b940652
 
 
2a9b164
 
 
b940652
2a9b164
efe30e8
 
 
 
 
 
 
ee5e9c0
 
 
 
efe30e8
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2a9b164
 
 
d923522
2a9b164
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
efe30e8
 
 
 
 
 
2a9b164
 
efe30e8
2a9b164
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b940652
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
import streamlit as st
import pandas as pd
import plotly.express as px
import folium
from folium.plugins import HeatMap, MarkerCluster
from streamlit_folium import st_folium

@st.cache_data
def load_and_preprocess_data(file_path):
    # Read the data
    df = pd.read_csv(file_path)
    
    # Basic preprocessing
    df = df.drop(['X', 'Y'], axis=1)
    df.dropna(subset=['Incidentid', 'DateTime', 'Year', 'Latitude', 'Longitude'], inplace=True)

    # Convert Year to int 
    df['Year'] = df['Year'].astype(int)

    # Fill missing values
    numeric = ['Age_Drv1', 'Age_Drv2']
    for col in numeric:
        df[col].fillna(df[col].median(), inplace=True)
        
    categorical = ['Gender_Drv1', 'Violation1_Drv1', 'AlcoholUse_Drv1', 'DrugUse_Drv1',
                  'Gender_Drv2', 'Violation1_Drv2', 'AlcoholUse_Drv2', 'DrugUse_Drv2',
                  'Unittype_Two', 'Traveldirection_Two', 'Unitaction_Two', 'CrossStreet']
    for col in categorical:
        df[col].fillna('Unknown', inplace=True)
    
    # Remove invalid ages
    df = df[
        (df['Age_Drv1'] <= 90) & 
        (df['Age_Drv2'] <= 90) & 
        (df['Age_Drv1'] >= 16) & 
        (df['Age_Drv2'] >= 16)
    ]
    
    # Create age groups
    bins = [15, 25, 35, 45, 55, 65, 90]
    labels = ['16-25', '26-35', '36-45', '46-55', '56-65', '65+']
    
    df['Age_Group_Drv1'] = pd.cut(df['Age_Drv1'], bins=bins, labels=labels)
    df['Age_Group_Drv2'] = pd.cut(df['Age_Drv2'], bins=bins, labels=labels)
    
    return df

def create_severity_violation_chart(df, age_group=None):
    # Apply age group filter if selected
    if age_group != 'All Ages':
        df = df[(df['Age_Group_Drv1'] == age_group) | (df['Age_Group_Drv2'] == age_group)]
    
    # Combine violations from both drivers
    violations_1 = df.groupby(['Violation1_Drv1', 'Injuryseverity']).size().reset_index(name='count')
    violations_2 = df.groupby(['Violation1_Drv2', 'Injuryseverity']).size().reset_index(name='count')
    
    violations_1.columns = ['Violation', 'Severity', 'count']
    violations_2.columns = ['Violation', 'Severity', 'count']
    
    violations = pd.concat([violations_1, violations_2])
    violations = violations.groupby(['Violation', 'Severity'])['count'].sum().reset_index()
    
    # Create visualization
    fig = px.bar(
        violations,
        x='Violation',
        y='count',
        color='Severity',
        title=f'Crash Severity Distribution by Violation Type - {age_group}',
        labels={'count': 'Number of Incidents', 'Violation': 'Violation Type'},
        height=600
    )
    
    fig.update_layout(
        xaxis_tickangle=-45,
        legend_title='Severity Level',
        barmode='stack'
    )
    
    return fig

def get_top_violations(df, age_group):
    if age_group == 'All Ages':
        violations = pd.concat([
            df['Violation1_Drv1'].value_counts(),
            df['Violation1_Drv2'].value_counts()
        ]).groupby(level=0).sum()
    else:
        filtered_df = df[
            (df['Age_Group_Drv1'] == age_group) | 
            (df['Age_Group_Drv2'] == age_group)
        ]
        violations = pd.concat([
            filtered_df['Violation1_Drv1'].value_counts(),
            filtered_df['Violation1_Drv2'].value_counts()
        ]).groupby(level=0).sum()
    
    # Convert to DataFrame and format
    violations_df = violations.reset_index()
    violations_df.columns = ['Violation Type', 'Count']
    violations_df['Percentage'] = (violations_df['Count'] / violations_df['Count'].sum() * 100).round(2)
    violations_df['Percentage'] = violations_df['Percentage'].map('{:.2f}%'.format)
    
    return violations_df.head()

@st.cache_data
def create_map(df, selected_year):
    filtered_df = df[df['Year'] == selected_year]
        
    m = folium.Map(
        location=[33.4255, -111.9400],
        zoom_start=12,
        control_scale=True,
        tiles='CartoDB positron'
    )
    
    marker_cluster = MarkerCluster().add_to(m)
        
    for _, row in filtered_df.iterrows():
        folium.Marker(
            location=[row['Latitude'], row['Longitude']],
            popup=f"Accident at {row['Longitude']}, {row['Latitude']}<br>Date: {row['DateTime']}<br>Severity: {row['Injuryseverity']}",
            icon=folium.Icon(color='red')
        ).add_to(marker_cluster)
    
    heat_data = filtered_df[['Latitude', 'Longitude']].values.tolist()
    HeatMap(heat_data, radius=15, max_zoom=13, min_opacity=0.3).add_to(m)
    
    return m

def main():
    st.title('Traffic Crash Analysis')
    
    # Load data
    df = load_and_preprocess_data('1.08_Crash_Data_Report_(detail).csv')
    
    # Create tabs for different visualizations
    tab1, tab2 = st.tabs(["Crash Statistics", "Crash Map"])
    
    with tab1:
        # Age group selection
        age_groups = ['All Ages', '16-25', '26-35', '36-45', '46-55', '56-65', '65+']
        selected_age = st.selectbox('Select Age Group:', age_groups)
        
        # Create and display chart
        fig = create_severity_violation_chart(df, selected_age)
        st.plotly_chart(fig, use_container_width=True)
        
        # Display statistics
        if selected_age == 'All Ages':
            total_incidents = len(df)
        else:
            total_incidents = len(df[
                (df['Age_Group_Drv1'] == selected_age) | 
                (df['Age_Group_Drv2'] == selected_age)
            ])
        
        # Create two columns for statistics
        col1, col2 = st.columns(2)
        
        with col1:
            st.markdown(f"### Total Incidents")
            st.markdown(f"**{total_incidents:,}** incidents for {selected_age}")
        
        with col2:
            st.markdown("### Top Violations")
            top_violations = get_top_violations(df, selected_age)
            st.table(top_violations)
    
    with tab2:
        # Year selection for map
        years = sorted(df['Year'].unique())
        selected_year = st.selectbox('Select Year:', years)
        
        # Create and display map
        st.markdown("### Crash Location Map")
        map_placeholder = st.empty()
        with map_placeholder:
            m = create_map(df, selected_year)
            map_data = st_folium(
                m,
                width=800,
                height=600,
                key=f"map_{selected_year}",
                returned_objects=["null_drawing"]
            )

if __name__ == "__main__":
    main()