hyzhang00's picture
Create app.py
b940652 verified
raw
history blame
4.79 kB
import streamlit as st
import pandas as pd
import plotly.express as px
import plotly.graph_objects as go
import numpy as np
def load_and_preprocess_data(file_path):
# Read the data
df = pd.read_csv(file_path)
# Drop redundant columns
df = df.drop(['X', 'Y'], axis=1)
# Handle missing values
df.dropna(subset=['Incidentid', 'DateTime', 'Year', 'Latitude', 'Longitude'], inplace=True)
# Fill numeric values
numeric = ['Age_Drv1', 'Age_Drv2']
for col in numeric:
df[col].fillna(df[col].median(), inplace=True)
# Fill categorical values
categorical = [
'Gender_Drv1', 'Violation1_Drv1', 'AlcoholUse_Drv1', 'DrugUse_Drv1',
'Gender_Drv2', 'Violation1_Drv2', 'AlcoholUse_Drv2', 'DrugUse_Drv2',
'Unittype_Two', 'Traveldirection_Two', 'Unitaction_Two', 'CrossStreet'
]
for col in categorical:
df[col].fillna('Unknown', inplace=True)
# Remove invalid ages
df = df[
(df['Age_Drv1'] <= 90) &
(df['Age_Drv2'] <= 90) &
(df['Age_Drv1'] >= 16) &
(df['Age_Drv2'] >= 16)
]
# Create age groups for both drivers
df['Age_Group_Drv1'] = pd.cut(
df['Age_Drv1'],
bins=[15, 25, 35, 45, 55, 65, 90],
labels=['16-25', '26-35', '36-45', '46-55', '56-65', '65+']
)
df['Age_Group_Drv2'] = pd.cut(
df['Age_Drv2'],
bins=[15, 25, 35, 45, 55, 65, 90],
labels=['16-25', '26-35', '36-45', '46-55', '56-65', '65+']
)
return df
def create_severity_violation_chart(df, selected_age_group=None):
# Filter by age group if selected
if selected_age_group:
df = df[
(df['Age_Group_Drv1'] == selected_age_group) |
(df['Age_Group_Drv2'] == selected_age_group)
]
# Create violation categories for both drivers
violations_drv1 = df.groupby(['Violation1_Drv1', 'Injuryseverity']).size().reset_index(name='count')
violations_drv2 = df.groupby(['Violation1_Drv2', 'Injuryseverity']).size().reset_index(name='count')
# Combine violations from both drivers
violations_drv1.columns = ['Violation', 'Severity', 'count']
violations_drv2.columns = ['Violation', 'Severity', 'count']
violations_combined = pd.concat([violations_drv1, violations_drv2])
# Aggregate the combined violations
violations_agg = violations_combined.groupby(['Violation', 'Severity'])['count'].sum().reset_index()
# Create the stacked bar chart
fig = px.bar(
violations_agg,
x='Violation',
y='count',
color='Severity',
title=f'Distribution of Crash Severity by Violation Type {selected_age_group if selected_age_group else ""}',
labels={'count': 'Number of Incidents', 'Violation': 'Violation Type'},
height=600
)
# Customize the layout
fig.update_layout(
xaxis_tickangle=-45,
legend_title='Severity',
barmode='stack',
showlegend=True
)
return fig
def main():
st.title('Traffic Crash Analysis Dashboard')
# Load data
df = load_and_preprocess_data('1.08_Crash_Data_Report_(detail).csv')
# Create age group selector
st.sidebar.header('Filters')
age_groups = ['All'] + list(df['Age_Group_Drv1'].unique())
selected_age_group = st.sidebar.selectbox('Select Age Group', age_groups)
# Create and display the chart
if selected_age_group == 'All':
fig = create_severity_violation_chart(df)
else:
fig = create_severity_violation_chart(df, selected_age_group)
st.plotly_chart(fig, use_container_width=True)
# Add additional insights
st.subheader('Analysis Insights')
# Calculate and display some statistics
if selected_age_group == 'All':
total_crashes = len(df)
else:
total_crashes = len(df[
(df['Age_Group_Drv1'] == selected_age_group) |
(df['Age_Group_Drv2'] == selected_age_group)
])
st.write(f"Total number of crashes: {total_crashes:,}")
# Show top violations
st.subheader('Top Violations')
if selected_age_group == 'All':
violations = pd.concat([
df['Violation1_Drv1'].value_counts(),
df['Violation1_Drv2'].value_counts()
]).groupby(level=0).sum()
else:
filtered_df = df[
(df['Age_Group_Drv1'] == selected_age_group) |
(df['Age_Group_Drv2'] == selected_age_group)
]
violations = pd.concat([
filtered_df['Violation1_Drv1'].value_counts(),
filtered_df['Violation1_Drv2'].value_counts()
]).groupby(level=0).sum()
st.write(violations.head())
if __name__ == "__main__":
main()