Spaces:
Sleeping
Sleeping
import streamlit as st | |
import pandas as pd | |
import plotly.express as px | |
import plotly.graph_objects as go | |
import numpy as np | |
def load_and_preprocess_data(file_path): | |
# Read the data | |
df = pd.read_csv(file_path) | |
# Drop redundant columns | |
df = df.drop(['X', 'Y'], axis=1) | |
# Handle missing values | |
df.dropna(subset=['Incidentid', 'DateTime', 'Year', 'Latitude', 'Longitude'], inplace=True) | |
# Fill numeric values | |
numeric = ['Age_Drv1', 'Age_Drv2'] | |
for col in numeric: | |
df[col].fillna(df[col].median(), inplace=True) | |
# Fill categorical values | |
categorical = [ | |
'Gender_Drv1', 'Violation1_Drv1', 'AlcoholUse_Drv1', 'DrugUse_Drv1', | |
'Gender_Drv2', 'Violation1_Drv2', 'AlcoholUse_Drv2', 'DrugUse_Drv2', | |
'Unittype_Two', 'Traveldirection_Two', 'Unitaction_Two', 'CrossStreet' | |
] | |
for col in categorical: | |
df[col].fillna('Unknown', inplace=True) | |
# Remove invalid ages | |
df = df[ | |
(df['Age_Drv1'] <= 90) & | |
(df['Age_Drv2'] <= 90) & | |
(df['Age_Drv1'] >= 16) & | |
(df['Age_Drv2'] >= 16) | |
] | |
# Create age groups for both drivers | |
df['Age_Group_Drv1'] = pd.cut( | |
df['Age_Drv1'], | |
bins=[15, 25, 35, 45, 55, 65, 90], | |
labels=['16-25', '26-35', '36-45', '46-55', '56-65', '65+'] | |
) | |
df['Age_Group_Drv2'] = pd.cut( | |
df['Age_Drv2'], | |
bins=[15, 25, 35, 45, 55, 65, 90], | |
labels=['16-25', '26-35', '36-45', '46-55', '56-65', '65+'] | |
) | |
return df | |
def create_severity_violation_chart(df, selected_age_group=None): | |
# Filter by age group if selected | |
if selected_age_group: | |
df = df[ | |
(df['Age_Group_Drv1'] == selected_age_group) | | |
(df['Age_Group_Drv2'] == selected_age_group) | |
] | |
# Create violation categories for both drivers | |
violations_drv1 = df.groupby(['Violation1_Drv1', 'Injuryseverity']).size().reset_index(name='count') | |
violations_drv2 = df.groupby(['Violation1_Drv2', 'Injuryseverity']).size().reset_index(name='count') | |
# Combine violations from both drivers | |
violations_drv1.columns = ['Violation', 'Severity', 'count'] | |
violations_drv2.columns = ['Violation', 'Severity', 'count'] | |
violations_combined = pd.concat([violations_drv1, violations_drv2]) | |
# Aggregate the combined violations | |
violations_agg = violations_combined.groupby(['Violation', 'Severity'])['count'].sum().reset_index() | |
# Create the stacked bar chart | |
fig = px.bar( | |
violations_agg, | |
x='Violation', | |
y='count', | |
color='Severity', | |
title=f'Distribution of Crash Severity by Violation Type {selected_age_group if selected_age_group else ""}', | |
labels={'count': 'Number of Incidents', 'Violation': 'Violation Type'}, | |
height=600 | |
) | |
# Customize the layout | |
fig.update_layout( | |
xaxis_tickangle=-45, | |
legend_title='Severity', | |
barmode='stack', | |
showlegend=True | |
) | |
return fig | |
def main(): | |
st.title('Traffic Crash Analysis Dashboard') | |
# Load data | |
df = load_and_preprocess_data('1.08_Crash_Data_Report_(detail).csv') | |
# Create age group selector | |
st.sidebar.header('Filters') | |
age_groups = ['All'] + list(df['Age_Group_Drv1'].unique()) | |
selected_age_group = st.sidebar.selectbox('Select Age Group', age_groups) | |
# Create and display the chart | |
if selected_age_group == 'All': | |
fig = create_severity_violation_chart(df) | |
else: | |
fig = create_severity_violation_chart(df, selected_age_group) | |
st.plotly_chart(fig, use_container_width=True) | |
# Add additional insights | |
st.subheader('Analysis Insights') | |
# Calculate and display some statistics | |
if selected_age_group == 'All': | |
total_crashes = len(df) | |
else: | |
total_crashes = len(df[ | |
(df['Age_Group_Drv1'] == selected_age_group) | | |
(df['Age_Group_Drv2'] == selected_age_group) | |
]) | |
st.write(f"Total number of crashes: {total_crashes:,}") | |
# Show top violations | |
st.subheader('Top Violations') | |
if selected_age_group == 'All': | |
violations = pd.concat([ | |
df['Violation1_Drv1'].value_counts(), | |
df['Violation1_Drv2'].value_counts() | |
]).groupby(level=0).sum() | |
else: | |
filtered_df = df[ | |
(df['Age_Group_Drv1'] == selected_age_group) | | |
(df['Age_Group_Drv2'] == selected_age_group) | |
] | |
violations = pd.concat([ | |
filtered_df['Violation1_Drv1'].value_counts(), | |
filtered_df['Violation1_Drv2'].value_counts() | |
]).groupby(level=0).sum() | |
st.write(violations.head()) | |
if __name__ == "__main__": | |
main() |