msa17's picture
Update app.py
a2a8c23 verified
raw
history blame
15.1 kB
import streamlit as st
import pandas as pd
import plotly.express as px
import altair as alt
import folium
from folium.plugins import HeatMap, MarkerCluster
from streamlit_folium import st_folium
@st.cache_data
def load_and_preprocess_data(file_path):
# Read the data
df = pd.read_csv(file_path)
# Basic preprocessing
df = df.drop(['X', 'Y'], axis=1)
df.dropna(subset=['Incidentid', 'DateTime', 'Year', 'Latitude', 'Longitude'], inplace=True)
# Convert Year to int
df['Year'] = df['Year'].astype(int)
# Fill missing values
numeric = ['Age_Drv1', 'Age_Drv2']
for col in numeric:
df[col].fillna(df[col].median(), inplace=True)
categorical = ['Gender_Drv1', 'Violation1_Drv1', 'AlcoholUse_Drv1', 'DrugUse_Drv1',
'Gender_Drv2', 'Violation1_Drv2', 'AlcoholUse_Drv2', 'DrugUse_Drv2',
'Unittype_Two', 'Traveldirection_Two', 'Unitaction_Two', 'CrossStreet']
for col in categorical:
df[col].fillna('Unknown', inplace=True)
# Remove invalid ages
df = df[
(df['Age_Drv1'] <= 90) &
(df['Age_Drv2'] <= 90) &
(df['Age_Drv1'] >= 16) &
(df['Age_Drv2'] >= 16)
]
# Create age groups
bins = [15, 25, 35, 45, 55, 65, 90]
labels = ['16-25', '26-35', '36-45', '46-55', '56-65', '65+']
df['Age_Group_Drv1'] = pd.cut(df['Age_Drv1'], bins=bins, labels=labels)
df['Age_Group_Drv2'] = pd.cut(df['Age_Drv2'], bins=bins, labels=labels)
return df
def create_severity_violation_chart(df, age_group=None):
# Apply age group filter if selected
if age_group != 'All Ages':
df = df[(df['Age_Group_Drv1'] == age_group) | (df['Age_Group_Drv2'] == age_group)]
# Combine violations from both drivers
violations_1 = df.groupby(['Violation1_Drv1', 'Injuryseverity']).size().reset_index(name='count')
violations_2 = df.groupby(['Violation1_Drv2', 'Injuryseverity']).size().reset_index(name='count')
violations_1.columns = ['Violation', 'Severity', 'count']
violations_2.columns = ['Violation', 'Severity', 'count']
violations = pd.concat([violations_1, violations_2])
violations = violations.groupby(['Violation', 'Severity'])['count'].sum().reset_index()
# Create visualization
fig = px.bar(
violations,
x='Violation',
y='count',
color='Severity',
title=f'Crash Severity Distribution by Violation Type - {age_group}',
labels={'count': 'Number of Incidents', 'Violation': 'Violation Type'},
height=600
)
fig.update_layout(
xaxis_tickangle=-45,
legend_title='Severity Level',
barmode='stack'
)
return fig
def get_top_violations(df, age_group):
if age_group == 'All Ages':
violations = pd.concat([
df['Violation1_Drv1'].value_counts(),
df['Violation1_Drv2'].value_counts()
]).groupby(level=0).sum()
else:
filtered_df = df[
(df['Age_Group_Drv1'] == age_group) |
(df['Age_Group_Drv2'] == age_group)
]
violations = pd.concat([
filtered_df['Violation1_Drv1'].value_counts(),
filtered_df['Violation1_Drv2'].value_counts()
]).groupby(level=0).sum()
# Convert to DataFrame and format
violations_df = violations.reset_index()
violations_df.columns = ['Violation Type', 'Count']
violations_df['Percentage'] = (violations_df['Count'] / violations_df['Count'].sum() * 100).round(2)
violations_df['Percentage'] = violations_df['Percentage'].map('{:.2f}%'.format)
return violations_df.head()
@st.cache_data
def create_map(df, selected_year):
filtered_df = df[df['Year'] == selected_year]
m = folium.Map(
location=[33.4255, -111.9400],
zoom_start=12,
control_scale=True,
tiles='CartoDB positron'
)
marker_cluster = MarkerCluster().add_to(m)
for _, row in filtered_df.iterrows():
folium.Marker(
location=[row['Latitude'], row['Longitude']],
popup=f"Accident at {row['Longitude']}, {row['Latitude']}<br>Date: {row['DateTime']}<br>Severity: {row['Injuryseverity']}",
icon=folium.Icon(color='red')
).add_to(marker_cluster)
heat_data = filtered_df[['Latitude', 'Longitude']].values.tolist()
HeatMap(heat_data, radius=15, max_zoom=13, min_opacity=0.3).add_to(m)
return m
def create_injuries_fatalities_chart(crash_data, unit_type):
# 5th visualization title
st.header("5. Total Injuries and Fatalities by Month")
# Filter rows where we have valid data for all necessary columns
crash_data = crash_data[['DateTime', 'Totalinjuries', 'Totalfatalities', 'Unittype_One', 'Unittype_Two']].dropna()
# Convert "DateTime" to datetime type
crash_data['DateTime'] = pd.to_datetime(crash_data['DateTime'], errors='coerce')
crash_data['Month'] = crash_data['DateTime'].dt.month_name()
# sort months in order
month_order = ['January', 'February', 'March', 'April', 'May', 'June', 'July', 'August', 'September', 'October', 'November', 'December']
crash_data['Month'] = pd.Categorical(crash_data['Month'], categories=month_order, ordered=True)
# Dropdown for Unit Type selection
# Dropdown for Unit Type selection
# st.sidebar.selectbox("Select Unit Type", options=['Total'] + crash_data['Unittype_One'].dropna().unique().tolist()) # previous location of dropdown in sidebar
# unit_type = st.selectbox("Select Unit Type", options=['Total'] + crash_data['Unittype_One'].dropna().unique().tolist())
# unit_type_pairs = set()
# for _, row in crash_data[['Unittype_One', 'Unittype_Two']].dropna().iterrows():
# if row['Unittype_One'] != 'Driverless' or row['Unittype_Two'] != 'Driverless':
# pair = ' vs '.join(sorted([row['Unittype_One'], row['Unittype_Two']]))
# unit_type_pairs.add(pair)
# # unit_type_pairs = list(unit_type_pairs) # modified as below to sort the dropdown options in alphabetical order
# unit_type_pairs = sorted(list(unit_type_pairs))
# unit_type = st.selectbox("Select Unit Type Pair", options=['Total'] + unit_type_pairs)
# Filter data based on the selected unit type
if unit_type == 'Total':
filtered_data = crash_data
else:
unit_one, unit_two = unit_type.split(' vs ')
filtered_data = crash_data[((crash_data['Unittype_One'] == unit_one) & (crash_data['Unittype_Two'] == unit_two)) |
((crash_data['Unittype_One'] == unit_two) & (crash_data['Unittype_Two'] == unit_one))]
# Group data by month and calculate total injuries and fatalities
monthly_sum = filtered_data.groupby('Month').agg({'Totalinjuries': 'sum', 'Totalfatalities': 'sum'}).reset_index()
# Reshape the data for easier plotting
injuries = monthly_sum[['Month', 'Totalinjuries']].rename(columns={'Totalinjuries': 'Value'})
injuries['Measure'] = 'Total Injuries'
fatalities = monthly_sum[['Month', 'Totalfatalities']].rename(columns={'Totalfatalities': 'Value'})
fatalities['Measure'] = 'Total Fatalities'
combined_data = pd.concat([injuries, fatalities])
# Originally tried to use bar chart but switched to line chart for better trend visualization
# alt.Chart(monthly_sum).mark_bar().encode(
# x=alt.X('Month', sort=month_order, title='Month'),
# y=alt.Y('Totalinjuries', title='Total Injuries', axis=alt.Axis(titleColor='blue', labelColor='blue', tickColor='blue')),
# color=alt.value('blue'),
# tooltip=['Month', 'Totalinjuries']
# ).properties(
# title='Total Injuries and Fatalities by Month',
# width=300,
# height=300
# ) + alt.Chart(monthly_sum).mark_bar().encode(
# x=alt.X('Month', sort=month_order, title='Month'),
# y=alt.Y('Totalfatalities', title='Total Fatalities', axis=alt.Axis(titleColor='red', labelColor='red', tickColor='red')),
# color=alt.value('red'),
# tooltip=['Month', 'Totalfatalities']
# )
# Tried to figure out how to plot a legend using altair
# line_chart = alt.Chart(monthly_sum).mark_line(point=True).encode(
# x=alt.X('Month', sort=month_order, title='Month'),
# y=alt.Y('Totalinjuries', title='Total Injuries & Fatalities', axis=alt.Axis(titleColor='black')),
# color=alt.value('blue'),
# tooltip=['Month', 'Totalinjuries']
# ).properties(
# title=f'Total Injuries and Fatalities by Month for Unit Type Pair: {unit_type}',
# width=600,
# height=400
# ) + alt.Chart(monthly_sum).mark_line(point=True).encode(
# x=alt.X('Month', sort=month_order, title='Month'),
# y=alt.Y('Totalfatalities', axis=alt.Axis(titleColor='red')),
# color=alt.value('red'),
# tooltip=['Month', 'Totalfatalities']
# ).configure_legend(
# titleFontSize=14,
# labelFontSize=12,
# titleColor='black',
# labelColor='black'
# )
# Plot line chart
line_chart = alt.Chart(combined_data).mark_line(point=True).encode(
x=alt.X('Month:N', sort=month_order, title='Month'),
y=alt.Y('Value:Q', title='Total Injuries & Fatalities'),
color=alt.Color('Measure:N', title='', scale=alt.Scale(domain=['Total Injuries', 'Total Fatalities'], range=['blue', 'red'])),
tooltip=['Month', 'Measure:N', 'Value:Q']
).properties(
title=f'Total Injuries and Fatalities by Month for Unit Type Pair: {unit_type}',
width=600,
height=400
)
# # Combine the charts (trying to make legend)
# combined_chart = alt.layer(line_chart_injuries, line_chart_fatalities).properties(
# title=f'Total Injuries and Fatalities by Month for Unit Type Pair: {unit_type}',
# width=600,
# height=400
# ).configure_legend(
# titleFontSize=14,
# labelFontSize=12,
# titleColor='black',
# labelColor='black'
# )
return line_chart
def create_crash_trend_chart(df, weather=None):
if weather and weather != 'All Conditions':
df = df[df['Weather'] == weather]
# Group data by year and count unique Incident IDs
trend_data = df.groupby('Year')['Incidentid'].nunique().reset_index()
trend_data.columns = ['Year', 'Crash Count']
# Create line graph
fig = px.line(
trend_data,
x='Year',
y='Crash Count',
title=f'Crash Trend Over Time ({weather})',
labels={'Year': 'Year', 'Crash Count': 'Number of Unique Crashes'},
markers=True,
height=600
)
fig.update_traces(line=dict(width=2), marker=dict(size=8))
fig.update_layout(legend_title_text='Trend')
return fig
def main():
st.title('Traffic Crash Analysis')
# Load data
df = load_and_preprocess_data('1.08_Crash_Data_Report_(detail).csv')
if 'Weather' not in df.columns:
df['Weather'] = 'Unknown'
# Create tabs for different visualizations
tab1, tab2, tab3, tab4, tab5 = st.tabs(["Crash Statistics", "Crash Map", "Crash Trend", "Crash Injuries/Fatalities","Distribution by Category"])
with tab1:
# Age group selection
age_groups = ['All Ages', '16-25', '26-35', '36-45', '46-55', '56-65', '65+']
selected_age = st.selectbox('Select Age Group:', age_groups)
# Create and display chart
fig = create_severity_violation_chart(df, selected_age)
st.plotly_chart(fig, use_container_width=True)
# Display statistics
if selected_age == 'All Ages':
total_incidents = len(df)
else:
total_incidents = len(df[
(df['Age_Group_Drv1'] == selected_age) |
(df['Age_Group_Drv2'] == selected_age)
])
# Create two columns for statistics
col1, col2 = st.columns(2)
with col1:
st.markdown(f"### Total Incidents")
st.markdown(f"**{total_incidents:,}** incidents for {selected_age}")
with col2:
st.markdown("### Top Violations")
top_violations = get_top_violations(df, selected_age)
st.table(top_violations)
with tab2:
# Year selection for map
years = sorted(df['Year'].unique())
selected_year = st.selectbox('Select Year:', years)
# Create and display map
st.markdown("### Crash Location Map")
map_placeholder = st.empty()
with map_placeholder:
m = create_map(df, selected_year)
map_data = st_folium(
m,
width=800,
height=600,
key=f"map_{selected_year}",
returned_objects=["null_drawing"]
)
with tab3:
# Weather condition filter
weather = ['All Conditions'] + sorted(df['Weather'].unique())
selected_weather = st.selectbox('Select Weather Condition:', weather)
# Create and display line graph
st.markdown("### Crash Trend Over Time")
trend_fig = create_crash_trend_chart(df, selected_weather)
st.plotly_chart(trend_fig, use_container_width=True)
with tab4:
# Dropdown for Unit Type selection
unit_type_pairs = set()
for _, row in df[['Unittype_One', 'Unittype_Two']].dropna().iterrows():
if row['Unittype_One'] != 'Driverless' or row['Unittype_Two'] != 'Driverless':
pair = ' vs '.join(sorted([row['Unittype_One'], row['Unittype_Two']]))
unit_type_pairs.add(pair)
unit_type_pairs = sorted(list(unit_type_pairs))
unit_type = st.selectbox("Select Unit Type Pair", options=['Total'] + unit_type_pairs)
# Create 5th Visualization: Injuries and fatalities chart
injuries_fatalities_chart = create_injuries_fatalities_chart(df, unit_type)
st.altair_chart(injuries_fatalities_chart, use_container_width=True)
st.markdown("#### TODO: add write-up for this 5th chart.")
with tab5:
# Dropdown for category selection
categories = [
'Collisionmanner',
'Lightcondition',
'Weather',
'SurfaceCondition',
'AlcoholUse_Drv1',
'Gender_Drv1',
]
selected_category = st.selectbox("Select Category:", categories)
# Dropdown for year selection
years = ['All Years'] + sorted(df['Year'].dropna().unique().astype(int).tolist())
selected_year = st.selectbox("Select Year:", years)
# Generate and display the distribution chart
st.markdown(f"### Distribution of Incidents by {selected_category}")
distribution_chart = create_category_distribution_chart(df, selected_category, selected_year)
st.plotly_chart(distribution_chart, use_container_width=True)
if __name__ == "__main__":
main()