Spaces:
Running
Running
import streamlit as st | |
import pandas as pd | |
import plotly.express as px | |
import altair as alt | |
import folium | |
from folium.plugins import HeatMap, MarkerCluster | |
from streamlit_folium import st_folium | |
def load_and_preprocess_data(file_path): | |
# Read the data | |
df = pd.read_csv(file_path) | |
# Basic preprocessing | |
df = df.drop(['X', 'Y'], axis=1) | |
df.dropna(subset=['Incidentid', 'DateTime', 'Year', 'Latitude', 'Longitude'], inplace=True) | |
# Convert Year to int | |
df['Year'] = df['Year'].astype(int) | |
# Fill missing values | |
numeric = ['Age_Drv1', 'Age_Drv2'] | |
for col in numeric: | |
df[col].fillna(df[col].median(), inplace=True) | |
categorical = ['Gender_Drv1', 'Violation1_Drv1', 'AlcoholUse_Drv1', 'DrugUse_Drv1', | |
'Gender_Drv2', 'Violation1_Drv2', 'AlcoholUse_Drv2', 'DrugUse_Drv2', | |
'Unittype_Two', 'Traveldirection_Two', 'Unitaction_Two', 'CrossStreet'] | |
for col in categorical: | |
df[col].fillna('Unknown', inplace=True) | |
# Remove invalid ages | |
df = df[ | |
(df['Age_Drv1'] <= 90) & | |
(df['Age_Drv2'] <= 90) & | |
(df['Age_Drv1'] >= 16) & | |
(df['Age_Drv2'] >= 16) | |
] | |
# Create age groups | |
bins = [15, 25, 35, 45, 55, 65, 90] | |
labels = ['16-25', '26-35', '36-45', '46-55', '56-65', '65+'] | |
df['Age_Group_Drv1'] = pd.cut(df['Age_Drv1'], bins=bins, labels=labels) | |
df['Age_Group_Drv2'] = pd.cut(df['Age_Drv2'], bins=bins, labels=labels) | |
return df | |
def create_severity_violation_chart(df, age_group=None): | |
# Apply age group filter if selected | |
if age_group != 'All Ages': | |
df = df[(df['Age_Group_Drv1'] == age_group) | (df['Age_Group_Drv2'] == age_group)] | |
# Combine violations from both drivers | |
violations_1 = df.groupby(['Violation1_Drv1', 'Injuryseverity']).size().reset_index(name='count') | |
violations_2 = df.groupby(['Violation1_Drv2', 'Injuryseverity']).size().reset_index(name='count') | |
violations_1.columns = ['Violation', 'Severity', 'count'] | |
violations_2.columns = ['Violation', 'Severity', 'count'] | |
violations = pd.concat([violations_1, violations_2]) | |
violations = violations.groupby(['Violation', 'Severity'])['count'].sum().reset_index() | |
# Create visualization | |
fig = px.bar( | |
violations, | |
x='Violation', | |
y='count', | |
color='Severity', | |
title=f'Crash Severity Distribution by Violation Type - {age_group}', | |
labels={'count': 'Number of Incidents', 'Violation': 'Violation Type'}, | |
height=600 | |
) | |
fig.update_layout( | |
xaxis_tickangle=-45, | |
legend_title='Severity Level', | |
barmode='stack' | |
) | |
return fig | |
def get_top_violations(df, age_group): | |
if age_group == 'All Ages': | |
violations = pd.concat([ | |
df['Violation1_Drv1'].value_counts(), | |
df['Violation1_Drv2'].value_counts() | |
]).groupby(level=0).sum() | |
else: | |
filtered_df = df[ | |
(df['Age_Group_Drv1'] == age_group) | | |
(df['Age_Group_Drv2'] == age_group) | |
] | |
violations = pd.concat([ | |
filtered_df['Violation1_Drv1'].value_counts(), | |
filtered_df['Violation1_Drv2'].value_counts() | |
]).groupby(level=0).sum() | |
# Convert to DataFrame and format | |
violations_df = violations.reset_index() | |
violations_df.columns = ['Violation Type', 'Count'] | |
violations_df['Percentage'] = (violations_df['Count'] / violations_df['Count'].sum() * 100).round(2) | |
violations_df['Percentage'] = violations_df['Percentage'].map('{:.2f}%'.format) | |
return violations_df.head() | |
def create_map(df, selected_year): | |
filtered_df = df[df['Year'] == selected_year] | |
m = folium.Map( | |
location=[33.4255, -111.9400], | |
zoom_start=12, | |
control_scale=True, | |
tiles='CartoDB positron' | |
) | |
marker_cluster = MarkerCluster().add_to(m) | |
for _, row in filtered_df.iterrows(): | |
folium.Marker( | |
location=[row['Latitude'], row['Longitude']], | |
popup=f"Accident at {row['Longitude']}, {row['Latitude']}<br>Date: {row['DateTime']}<br>Severity: {row['Injuryseverity']}", | |
icon=folium.Icon(color='red') | |
).add_to(marker_cluster) | |
heat_data = filtered_df[['Latitude', 'Longitude']].values.tolist() | |
HeatMap(heat_data, radius=15, max_zoom=13, min_opacity=0.3).add_to(m) | |
return m | |
def create_injuries_fatalities_chart(crash_data, unit_type): | |
# 5th visualization title | |
st.header("5. Total Injuries and Fatalities by Month") | |
# Filter rows where we have valid data for all necessary columns | |
crash_data = crash_data[['DateTime', 'Totalinjuries', 'Totalfatalities', 'Unittype_One', 'Unittype_Two']].dropna() | |
# Convert "DateTime" to datetime type | |
crash_data['DateTime'] = pd.to_datetime(crash_data['DateTime'], errors='coerce') | |
crash_data['Month'] = crash_data['DateTime'].dt.month_name() | |
# sort months in order | |
month_order = ['January', 'February', 'March', 'April', 'May', 'June', 'July', 'August', 'September', 'October', 'November', 'December'] | |
crash_data['Month'] = pd.Categorical(crash_data['Month'], categories=month_order, ordered=True) | |
# Dropdown for Unit Type selection | |
# Dropdown for Unit Type selection | |
# st.sidebar.selectbox("Select Unit Type", options=['Total'] + crash_data['Unittype_One'].dropna().unique().tolist()) # previous location of dropdown in sidebar | |
# unit_type = st.selectbox("Select Unit Type", options=['Total'] + crash_data['Unittype_One'].dropna().unique().tolist()) | |
# unit_type_pairs = set() | |
# for _, row in crash_data[['Unittype_One', 'Unittype_Two']].dropna().iterrows(): | |
# if row['Unittype_One'] != 'Driverless' or row['Unittype_Two'] != 'Driverless': | |
# pair = ' vs '.join(sorted([row['Unittype_One'], row['Unittype_Two']])) | |
# unit_type_pairs.add(pair) | |
# # unit_type_pairs = list(unit_type_pairs) # modified as below to sort the dropdown options in alphabetical order | |
# unit_type_pairs = sorted(list(unit_type_pairs)) | |
# unit_type = st.selectbox("Select Unit Type Pair", options=['Total'] + unit_type_pairs) | |
# Filter data based on the selected unit type | |
if unit_type == 'Total': | |
filtered_data = crash_data | |
else: | |
unit_one, unit_two = unit_type.split(' vs ') | |
filtered_data = crash_data[((crash_data['Unittype_One'] == unit_one) & (crash_data['Unittype_Two'] == unit_two)) | | |
((crash_data['Unittype_One'] == unit_two) & (crash_data['Unittype_Two'] == unit_one))] | |
# Group data by month and calculate total injuries and fatalities | |
monthly_sum = filtered_data.groupby('Month').agg({'Totalinjuries': 'sum', 'Totalfatalities': 'sum'}).reset_index() | |
# Reshape the data for easier plotting | |
injuries = monthly_sum[['Month', 'Totalinjuries']].rename(columns={'Totalinjuries': 'Value'}) | |
injuries['Measure'] = 'Total Injuries' | |
fatalities = monthly_sum[['Month', 'Totalfatalities']].rename(columns={'Totalfatalities': 'Value'}) | |
fatalities['Measure'] = 'Total Fatalities' | |
combined_data = pd.concat([injuries, fatalities]) | |
# Originally tried to use bar chart but switched to line chart for better trend visualization | |
# alt.Chart(monthly_sum).mark_bar().encode( | |
# x=alt.X('Month', sort=month_order, title='Month'), | |
# y=alt.Y('Totalinjuries', title='Total Injuries', axis=alt.Axis(titleColor='blue', labelColor='blue', tickColor='blue')), | |
# color=alt.value('blue'), | |
# tooltip=['Month', 'Totalinjuries'] | |
# ).properties( | |
# title='Total Injuries and Fatalities by Month', | |
# width=300, | |
# height=300 | |
# ) + alt.Chart(monthly_sum).mark_bar().encode( | |
# x=alt.X('Month', sort=month_order, title='Month'), | |
# y=alt.Y('Totalfatalities', title='Total Fatalities', axis=alt.Axis(titleColor='red', labelColor='red', tickColor='red')), | |
# color=alt.value('red'), | |
# tooltip=['Month', 'Totalfatalities'] | |
# ) | |
# Tried to figure out how to plot a legend using altair | |
# line_chart = alt.Chart(monthly_sum).mark_line(point=True).encode( | |
# x=alt.X('Month', sort=month_order, title='Month'), | |
# y=alt.Y('Totalinjuries', title='Total Injuries & Fatalities', axis=alt.Axis(titleColor='black')), | |
# color=alt.value('blue'), | |
# tooltip=['Month', 'Totalinjuries'] | |
# ).properties( | |
# title=f'Total Injuries and Fatalities by Month for Unit Type Pair: {unit_type}', | |
# width=600, | |
# height=400 | |
# ) + alt.Chart(monthly_sum).mark_line(point=True).encode( | |
# x=alt.X('Month', sort=month_order, title='Month'), | |
# y=alt.Y('Totalfatalities', axis=alt.Axis(titleColor='red')), | |
# color=alt.value('red'), | |
# tooltip=['Month', 'Totalfatalities'] | |
# ).configure_legend( | |
# titleFontSize=14, | |
# labelFontSize=12, | |
# titleColor='black', | |
# labelColor='black' | |
# ) | |
# Plot line chart | |
line_chart = alt.Chart(combined_data).mark_line(point=True).encode( | |
x=alt.X('Month:N', sort=month_order, title='Month'), | |
y=alt.Y('Value:Q', title='Total Injuries & Fatalities'), | |
color=alt.Color('Measure:N', title='', scale=alt.Scale(domain=['Total Injuries', 'Total Fatalities'], range=['blue', 'red'])), | |
tooltip=['Month', 'Measure:N', 'Value:Q'] | |
).properties( | |
title=f'Total Injuries and Fatalities by Month for Unit Type Pair: {unit_type}', | |
width=600, | |
height=400 | |
) | |
# # Combine the charts (trying to make legend) | |
# combined_chart = alt.layer(line_chart_injuries, line_chart_fatalities).properties( | |
# title=f'Total Injuries and Fatalities by Month for Unit Type Pair: {unit_type}', | |
# width=600, | |
# height=400 | |
# ).configure_legend( | |
# titleFontSize=14, | |
# labelFontSize=12, | |
# titleColor='black', | |
# labelColor='black' | |
# ) | |
return line_chart | |
def create_crash_trend_chart(df, weather=None): | |
if weather and weather != 'All Conditions': | |
df = df[df['Weather'] == weather] | |
# Group data by year and count unique Incident IDs | |
trend_data = df.groupby('Year')['Incidentid'].nunique().reset_index() | |
trend_data.columns = ['Year', 'Crash Count'] | |
# Create line graph | |
fig = px.line( | |
trend_data, | |
x='Year', | |
y='Crash Count', | |
title=f'Crash Trend Over Time ({weather})', | |
labels={'Year': 'Year', 'Crash Count': 'Number of Unique Crashes'}, | |
markers=True, | |
height=600 | |
) | |
fig.update_traces(line=dict(width=2), marker=dict(size=8)) | |
fig.update_layout(legend_title_text='Trend') | |
return fig | |
def main(): | |
st.title('Traffic Crash Analysis') | |
# Load data | |
df = load_and_preprocess_data('1.08_Crash_Data_Report_(detail).csv') | |
if 'Weather' not in df.columns: | |
df['Weather'] = 'Unknown' | |
# Create tabs for different visualizations | |
tab1, tab2, tab3, tab4, tab5 = st.tabs(["Crash Statistics", "Crash Map", "Crash Trend", "Crash Injuries/Fatalities","Distribution by Category"]) | |
with tab1: | |
# Age group selection | |
age_groups = ['All Ages', '16-25', '26-35', '36-45', '46-55', '56-65', '65+'] | |
selected_age = st.selectbox('Select Age Group:', age_groups) | |
# Create and display chart | |
fig = create_severity_violation_chart(df, selected_age) | |
st.plotly_chart(fig, use_container_width=True) | |
# Display statistics | |
if selected_age == 'All Ages': | |
total_incidents = len(df) | |
else: | |
total_incidents = len(df[ | |
(df['Age_Group_Drv1'] == selected_age) | | |
(df['Age_Group_Drv2'] == selected_age) | |
]) | |
# Create two columns for statistics | |
col1, col2 = st.columns(2) | |
with col1: | |
st.markdown(f"### Total Incidents") | |
st.markdown(f"**{total_incidents:,}** incidents for {selected_age}") | |
with col2: | |
st.markdown("### Top Violations") | |
top_violations = get_top_violations(df, selected_age) | |
st.table(top_violations) | |
with tab2: | |
# Year selection for map | |
years = sorted(df['Year'].unique()) | |
selected_year = st.selectbox('Select Year:', years) | |
# Create and display map | |
st.markdown("### Crash Location Map") | |
map_placeholder = st.empty() | |
with map_placeholder: | |
m = create_map(df, selected_year) | |
map_data = st_folium( | |
m, | |
width=800, | |
height=600, | |
key=f"map_{selected_year}", | |
returned_objects=["null_drawing"] | |
) | |
with tab3: | |
# Weather condition filter | |
weather = ['All Conditions'] + sorted(df['Weather'].unique()) | |
selected_weather = st.selectbox('Select Weather Condition:', weather) | |
# Create and display line graph | |
st.markdown("### Crash Trend Over Time") | |
trend_fig = create_crash_trend_chart(df, selected_weather) | |
st.plotly_chart(trend_fig, use_container_width=True) | |
with tab4: | |
# Dropdown for Unit Type selection | |
unit_type_pairs = set() | |
for _, row in df[['Unittype_One', 'Unittype_Two']].dropna().iterrows(): | |
if row['Unittype_One'] != 'Driverless' or row['Unittype_Two'] != 'Driverless': | |
pair = ' vs '.join(sorted([row['Unittype_One'], row['Unittype_Two']])) | |
unit_type_pairs.add(pair) | |
unit_type_pairs = sorted(list(unit_type_pairs)) | |
unit_type = st.selectbox("Select Unit Type Pair", options=['Total'] + unit_type_pairs) | |
# Create 5th Visualization: Injuries and fatalities chart | |
injuries_fatalities_chart = create_injuries_fatalities_chart(df, unit_type) | |
st.altair_chart(injuries_fatalities_chart, use_container_width=True) | |
st.markdown("#### TODO: add write-up for this 5th chart.") | |
with tab5: | |
# Dropdown for category selection | |
categories = [ | |
'Collisionmanner', | |
'Lightcondition', | |
'Weather', | |
'SurfaceCondition', | |
'AlcoholUse_Drv1', | |
'Gender_Drv1', | |
] | |
selected_category = st.selectbox("Select Category:", categories) | |
# Dropdown for year selection | |
years = ['All Years'] + sorted(df['Year'].dropna().unique().astype(int).tolist()) | |
selected_year = st.selectbox("Select Year:", years) | |
# Generate and display the distribution chart | |
st.markdown(f"### Distribution of Incidents by {selected_category}") | |
distribution_chart = create_category_distribution_chart(df, selected_category, selected_year) | |
st.plotly_chart(distribution_chart, use_container_width=True) | |
if __name__ == "__main__": | |
main() |