import streamlit as st import pandas as pd import plotly.express as px def load_and_preprocess_data(file_path): # Read the data df = pd.read_csv(file_path) # Basic preprocessing df = df.drop(['X', 'Y'], axis=1) df.dropna(subset=['Incidentid', 'DateTime', 'Year', 'Latitude', 'Longitude'], inplace=True) # Convert Year to int df['Year'] = df['Year'].astype(int) # Fill missing values numeric = ['Age_Drv1', 'Age_Drv2'] for col in numeric: df[col].fillna(df[col].median(), inplace=True) categorical = ['Gender_Drv1', 'Violation1_Drv1', 'AlcoholUse_Drv1', 'DrugUse_Drv1', 'Gender_Drv2', 'Violation1_Drv2', 'AlcoholUse_Drv2', 'DrugUse_Drv2', 'Unittype_Two', 'Traveldirection_Two', 'Unitaction_Two', 'CrossStreet'] for col in categorical: df[col].fillna('Unknown', inplace=True) # Remove invalid ages df = df[ (df['Age_Drv1'] <= 90) & (df['Age_Drv2'] <= 90) & (df['Age_Drv1'] >= 16) & (df['Age_Drv2'] >= 16) ] # Create age groups bins = [15, 25, 35, 45, 55, 65, 90] labels = ['16-25', '26-35', '36-45', '46-55', '56-65', '65+'] df['Age_Group_Drv1'] = pd.cut(df['Age_Drv1'], bins=bins, labels=labels) df['Age_Group_Drv2'] = pd.cut(df['Age_Drv2'], bins=bins, labels=labels) return df def create_severity_violation_chart(df, age_group=None): # Apply age group filter if selected if age_group != 'All Ages': df = df[(df['Age_Group_Drv1'] == age_group) | (df['Age_Group_Drv2'] == age_group)] # Combine violations from both drivers violations_1 = df.groupby(['Violation1_Drv1', 'Injuryseverity']).size().reset_index(name='count') violations_2 = df.groupby(['Violation1_Drv2', 'Injuryseverity']).size().reset_index(name='count') violations_1.columns = ['Violation', 'Severity', 'count'] violations_2.columns = ['Violation', 'Severity', 'count'] violations = pd.concat([violations_1, violations_2]) violations = violations.groupby(['Violation', 'Severity'])['count'].sum().reset_index() # Create visualization fig = px.bar( violations, x='Violation', y='count', color='Severity', title=f'Crash Severity Distribution by Violation Type - {age_group}', labels={'count': 'Number of Incidents', 'Violation': 'Violation Type'}, height=600 ) fig.update_layout( xaxis_tickangle=-45, legend_title='Severity Level', barmode='stack' ) return fig def get_top_violations(df, age_group): if age_group == 'All Ages': violations = pd.concat([ df['Violation1_Drv1'].value_counts(), df['Violation1_Drv2'].value_counts() ]).groupby(level=0).sum() else: filtered_df = df[ (df['Age_Group_Drv1'] == age_group) | (df['Age_Group_Drv2'] == age_group) ] violations = pd.concat([ filtered_df['Violation1_Drv1'].value_counts(), filtered_df['Violation1_Drv2'].value_counts() ]).groupby(level=0).sum() # Convert to DataFrame and format violations_df = violations.reset_index() violations_df.columns = ['Violation Type', 'Count'] violations_df['Percentage'] = (violations_df['Count'] / violations_df['Count'].sum() * 100).round(2) violations_df['Percentage'] = violations_df['Percentage'].map('{:.2f}%'.format) return violations_df.head() def main(): st.title('Traffic Crash Analysis') # Load data df = load_and_preprocess_data('1.08_Crash_Data_Report_(detail).csv') # Create simple dropdown for age groups age_groups = ['All Ages', '16-25', '26-35', '36-45', '46-55', '56-65', '65+'] selected_age = st.selectbox('Select Age Group:', age_groups) # Create and display chart fig = create_severity_violation_chart(df, selected_age) st.plotly_chart(fig, use_container_width=True) # Display statistics if selected_age == 'All Ages': total_incidents = len(df) else: total_incidents = len(df[ (df['Age_Group_Drv1'] == selected_age) | (df['Age_Group_Drv2'] == selected_age) ]) # Create two columns for statistics col1, col2 = st.columns(2) with col1: st.markdown(f"### Total Incidents") st.markdown(f"**{total_incidents:,}** incidents for {selected_age}") # Display top violations table with col2: st.markdown("### Top Violations") top_violations = get_top_violations(df, selected_age) st.table(top_violations) if __name__ == "__main__": main()