import streamlit as st import pandas as pd import plotly.express as px import altair as alt import folium from folium.plugins import HeatMap, MarkerCluster from streamlit_folium import st_folium @st.cache_data def load_and_preprocess_data(file_path): # Read the data df = pd.read_csv(file_path) # Basic preprocessing df = df.drop(['X', 'Y'], axis=1) df.dropna(subset=['Incidentid', 'DateTime', 'Year', 'Latitude', 'Longitude'], inplace=True) # Convert Year to int df['Year'] = df['Year'].astype(int) # Fill missing values numeric = ['Age_Drv1', 'Age_Drv2'] for col in numeric: df[col].fillna(df[col].median(), inplace=True) categorical = ['Gender_Drv1', 'Violation1_Drv1', 'AlcoholUse_Drv1', 'DrugUse_Drv1', 'Gender_Drv2', 'Violation1_Drv2', 'AlcoholUse_Drv2', 'DrugUse_Drv2', 'Unittype_Two', 'Traveldirection_Two', 'Unitaction_Two', 'CrossStreet'] for col in categorical: df[col].fillna('Unknown', inplace=True) # Remove invalid ages df = df[ (df['Age_Drv1'] <= 90) & (df['Age_Drv2'] <= 90) & (df['Age_Drv1'] >= 16) & (df['Age_Drv2'] >= 16) ] # Create age groups bins = [15, 25, 35, 45, 55, 65, 90] labels = ['16-25', '26-35', '36-45', '46-55', '56-65', '65+'] df['Age_Group_Drv1'] = pd.cut(df['Age_Drv1'], bins=bins, labels=labels) df['Age_Group_Drv2'] = pd.cut(df['Age_Drv2'], bins=bins, labels=labels) return df def create_severity_violation_chart(df, age_group=None): # Apply age group filter if selected if age_group != 'All Ages': df = df[(df['Age_Group_Drv1'] == age_group) | (df['Age_Group_Drv2'] == age_group)] # Combine violations from both drivers violations_1 = df.groupby(['Violation1_Drv1', 'Injuryseverity']).size().reset_index(name='count') violations_2 = df.groupby(['Violation1_Drv2', 'Injuryseverity']).size().reset_index(name='count') violations_1.columns = ['Violation', 'Severity', 'count'] violations_2.columns = ['Violation', 'Severity', 'count'] violations = pd.concat([violations_1, violations_2]) violations = violations.groupby(['Violation', 'Severity'])['count'].sum().reset_index() # Create visualization fig = px.bar( violations, x='Violation', y='count', color='Severity', title=f'Crash Severity Distribution by Violation Type - {age_group}', labels={'count': 'Number of Incidents', 'Violation': 'Violation Type'}, height=600 ) fig.update_layout( xaxis_tickangle=-45, legend_title='Severity Level', barmode='stack' ) return fig def get_top_violations(df, age_group): if age_group == 'All Ages': violations = pd.concat([ df['Violation1_Drv1'].value_counts(), df['Violation1_Drv2'].value_counts() ]).groupby(level=0).sum() else: filtered_df = df[ (df['Age_Group_Drv1'] == age_group) | (df['Age_Group_Drv2'] == age_group) ] violations = pd.concat([ filtered_df['Violation1_Drv1'].value_counts(), filtered_df['Violation1_Drv2'].value_counts() ]).groupby(level=0).sum() # Convert to DataFrame and format violations_df = violations.reset_index() violations_df.columns = ['Violation Type', 'Count'] violations_df['Percentage'] = (violations_df['Count'] / violations_df['Count'].sum() * 100).round(2) violations_df['Percentage'] = violations_df['Percentage'].map('{:.2f}%'.format) return violations_df.head() @st.cache_data def create_map(df, selected_year): filtered_df = df[df['Year'] == selected_year] m = folium.Map( location=[33.4255, -111.9400], zoom_start=12, control_scale=True, tiles='CartoDB positron' ) marker_cluster = MarkerCluster().add_to(m) for _, row in filtered_df.iterrows(): folium.Marker( location=[row['Latitude'], row['Longitude']], popup=f"Accident at {row['Longitude']}, {row['Latitude']}
Date: {row['DateTime']}
Severity: {row['Injuryseverity']}", icon=folium.Icon(color='red') ).add_to(marker_cluster) heat_data = filtered_df[['Latitude', 'Longitude']].values.tolist() HeatMap(heat_data, radius=15, max_zoom=13, min_opacity=0.3).add_to(m) return m def create_injuries_fatalities_chart(crash_data, unit_type): # 5th visualization title st.header("5. Total Injuries and Fatalities by Month") # Filter rows where we have valid data for all necessary columns crash_data = crash_data[['DateTime', 'Totalinjuries', 'Totalfatalities', 'Unittype_One', 'Unittype_Two']].dropna() # Convert "DateTime" to datetime type crash_data['DateTime'] = pd.to_datetime(crash_data['DateTime'], errors='coerce') crash_data['Month'] = crash_data['DateTime'].dt.month_name() # sort months in order month_order = ['January', 'February', 'March', 'April', 'May', 'June', 'July', 'August', 'September', 'October', 'November', 'December'] crash_data['Month'] = pd.Categorical(crash_data['Month'], categories=month_order, ordered=True) # Dropdown for Unit Type selection # Dropdown for Unit Type selection # st.sidebar.selectbox("Select Unit Type", options=['Total'] + crash_data['Unittype_One'].dropna().unique().tolist()) # previous location of dropdown in sidebar # unit_type = st.selectbox("Select Unit Type", options=['Total'] + crash_data['Unittype_One'].dropna().unique().tolist()) # unit_type_pairs = set() # for _, row in crash_data[['Unittype_One', 'Unittype_Two']].dropna().iterrows(): # if row['Unittype_One'] != 'Driverless' or row['Unittype_Two'] != 'Driverless': # pair = ' vs '.join(sorted([row['Unittype_One'], row['Unittype_Two']])) # unit_type_pairs.add(pair) # # unit_type_pairs = list(unit_type_pairs) # modified as below to sort the dropdown options in alphabetical order # unit_type_pairs = sorted(list(unit_type_pairs)) # unit_type = st.selectbox("Select Unit Type Pair", options=['Total'] + unit_type_pairs) # Filter data based on the selected unit type if unit_type == 'Total': filtered_data = crash_data else: unit_one, unit_two = unit_type.split(' vs ') filtered_data = crash_data[((crash_data['Unittype_One'] == unit_one) & (crash_data['Unittype_Two'] == unit_two)) | ((crash_data['Unittype_One'] == unit_two) & (crash_data['Unittype_Two'] == unit_one))] # Group data by month and calculate total injuries and fatalities monthly_sum = filtered_data.groupby('Month').agg({'Totalinjuries': 'sum', 'Totalfatalities': 'sum'}).reset_index() # Reshape the data for easier plotting injuries = monthly_sum[['Month', 'Totalinjuries']].rename(columns={'Totalinjuries': 'Value'}) injuries['Measure'] = 'Total Injuries' fatalities = monthly_sum[['Month', 'Totalfatalities']].rename(columns={'Totalfatalities': 'Value'}) fatalities['Measure'] = 'Total Fatalities' combined_data = pd.concat([injuries, fatalities]) # Originally tried to use bar chart but switched to line chart for better trend visualization # alt.Chart(monthly_sum).mark_bar().encode( # x=alt.X('Month', sort=month_order, title='Month'), # y=alt.Y('Totalinjuries', title='Total Injuries', axis=alt.Axis(titleColor='blue', labelColor='blue', tickColor='blue')), # color=alt.value('blue'), # tooltip=['Month', 'Totalinjuries'] # ).properties( # title='Total Injuries and Fatalities by Month', # width=300, # height=300 # ) + alt.Chart(monthly_sum).mark_bar().encode( # x=alt.X('Month', sort=month_order, title='Month'), # y=alt.Y('Totalfatalities', title='Total Fatalities', axis=alt.Axis(titleColor='red', labelColor='red', tickColor='red')), # color=alt.value('red'), # tooltip=['Month', 'Totalfatalities'] # ) # Tried to figure out how to plot a legend using altair # line_chart = alt.Chart(monthly_sum).mark_line(point=True).encode( # x=alt.X('Month', sort=month_order, title='Month'), # y=alt.Y('Totalinjuries', title='Total Injuries & Fatalities', axis=alt.Axis(titleColor='black')), # color=alt.value('blue'), # tooltip=['Month', 'Totalinjuries'] # ).properties( # title=f'Total Injuries and Fatalities by Month for Unit Type Pair: {unit_type}', # width=600, # height=400 # ) + alt.Chart(monthly_sum).mark_line(point=True).encode( # x=alt.X('Month', sort=month_order, title='Month'), # y=alt.Y('Totalfatalities', axis=alt.Axis(titleColor='red')), # color=alt.value('red'), # tooltip=['Month', 'Totalfatalities'] # ).configure_legend( # titleFontSize=14, # labelFontSize=12, # titleColor='black', # labelColor='black' # ) # Plot line chart line_chart = alt.Chart(combined_data).mark_line(point=True).encode( x=alt.X('Month:N', sort=month_order, title='Month'), y=alt.Y('Value:Q', title='Total Injuries & Fatalities'), color=alt.Color('Measure:N', title='', scale=alt.Scale(domain=['Total Injuries', 'Total Fatalities'], range=['blue', 'red'])), tooltip=['Month', 'Measure:N', 'Value:Q'] ).properties( title=f'Total Injuries and Fatalities by Month for Unit Type Pair: {unit_type}', width=600, height=400 ) # # Combine the charts (trying to make legend) # combined_chart = alt.layer(line_chart_injuries, line_chart_fatalities).properties( # title=f'Total Injuries and Fatalities by Month for Unit Type Pair: {unit_type}', # width=600, # height=400 # ).configure_legend( # titleFontSize=14, # labelFontSize=12, # titleColor='black', # labelColor='black' # ) return line_chart def create_crash_trend_chart(df, weather=None): if weather and weather != 'All Conditions': df = df[df['Weather'] == weather] # Group data by year and count unique Incident IDs trend_data = df.groupby('Year')['Incidentid'].nunique().reset_index() trend_data.columns = ['Year', 'Crash Count'] # Create line graph fig = px.line( trend_data, x='Year', y='Crash Count', title=f'Crash Trend Over Time ({weather})', labels={'Year': 'Year', 'Crash Count': 'Number of Unique Crashes'}, markers=True, height=600 ) fig.update_traces(line=dict(width=2), marker=dict(size=8)) fig.update_layout(legend_title_text='Trend') return fig def create_category_distribution_chart(df, selected_category, selected_year): # Filter by selected year if selected_year != 'All Years': df = df[df['Year'] == int(selected_year)] # Group by selected category and Injury Severity grouped_data = df.groupby([selected_category, 'Injuryseverity']).size().reset_index(name='Count') # Calculate percentages for each category value total_counts = grouped_data.groupby(selected_category)['Count'].transform('sum') grouped_data['Percentage'] = (grouped_data['Count'] / total_counts * 100).round(2) # Create the stacked bar chart using Plotly fig = px.bar( grouped_data, x=selected_category, y='Count', color='Injuryseverity', text='Percentage', title=f'Distribution of Incidents by {selected_category} ({selected_year})', labels={'Count': 'Number of Incidents', selected_category: 'Category'}, height=600, ) # Customize the chart appearance fig.update_traces(texttemplate='%{text}%', textposition='inside') fig.update_layout( barmode='stack', xaxis_tickangle=-45, legend_title='Injury Severity', margin=dict(t=50, b=100), ) return fig def main(): st.title('Traffic Crash Analysis') # Load data df = load_and_preprocess_data('1.08_Crash_Data_Report_(detail).csv') if 'Weather' not in df.columns: df['Weather'] = 'Unknown' # Create tabs for different visualizations tab1, tab2, tab3, tab4, tab5 = st.tabs(["Crash Statistics", "Crash Map", "Crash Trend", "Crash Injuries/Fatalities","Distribution by Category"]) with tab1: # Age group selection age_groups = ['All Ages', '16-25', '26-35', '36-45', '46-55', '56-65', '65+'] selected_age = st.selectbox('Select Age Group:', age_groups) # Create and display chart fig = create_severity_violation_chart(df, selected_age) st.plotly_chart(fig, use_container_width=True) # Display statistics if selected_age == 'All Ages': total_incidents = len(df) else: total_incidents = len(df[ (df['Age_Group_Drv1'] == selected_age) | (df['Age_Group_Drv2'] == selected_age) ]) # Create two columns for statistics col1, col2 = st.columns(2) with col1: st.markdown(f"### Total Incidents") st.markdown(f"**{total_incidents:,}** incidents for {selected_age}") with col2: st.markdown("### Top Violations") top_violations = get_top_violations(df, selected_age) st.table(top_violations) with tab2: # Year selection for map years = sorted(df['Year'].unique()) selected_year = st.selectbox('Select Year:', years) # Create and display map st.markdown("### Crash Location Map") map_placeholder = st.empty() with map_placeholder: m = create_map(df, selected_year) map_data = st_folium( m, width=800, height=600, key=f"map_{selected_year}", returned_objects=["null_drawing"] ) with tab3: # Weather condition filter weather = ['All Conditions'] + sorted(df['Weather'].unique()) selected_weather = st.selectbox('Select Weather Condition:', weather) # Create and display line graph st.markdown("### Crash Trend Over Time") trend_fig = create_crash_trend_chart(df, selected_weather) st.plotly_chart(trend_fig, use_container_width=True) with tab4: # Dropdown for Unit Type selection unit_type_pairs = set() for _, row in df[['Unittype_One', 'Unittype_Two']].dropna().iterrows(): if row['Unittype_One'] != 'Driverless' or row['Unittype_Two'] != 'Driverless': pair = ' vs '.join(sorted([row['Unittype_One'], row['Unittype_Two']])) unit_type_pairs.add(pair) unit_type_pairs = sorted(list(unit_type_pairs)) unit_type = st.selectbox("Select Unit Type Pair", options=['Total'] + unit_type_pairs) # Create 5th Visualization: Injuries and fatalities chart injuries_fatalities_chart = create_injuries_fatalities_chart(df, unit_type) st.altair_chart(injuries_fatalities_chart, use_container_width=True) st.markdown("#### TODO: add write-up for this 5th chart.") with tab5: # Dropdown for category selection categories = [ 'Collisionmanner', 'Lightcondition', 'Weather', 'SurfaceCondition', 'AlcoholUse_Drv1', 'Gender_Drv1', ] selected_category = st.selectbox("Select Category:", categories) # Dropdown for year selection years = ['All Years'] + sorted(df['Year'].dropna().unique().astype(int).tolist()) selected_year = st.selectbox("Select Year:", years) # Generate and display the distribution chart st.markdown(f"### Distribution of Incidents by {selected_category}") distribution_chart = create_category_distribution_chart(df, selected_category, selected_year) st.plotly_chart(distribution_chart, use_container_width=True) if __name__ == "__main__": main()