Spaces:
Runtime error
Runtime error
File size: 5,015 Bytes
eb1f440 93ba032 eb1f440 133338c 93ba032 eb1f440 9ce0485 ed0c441 616896b cceaf74 538a20c 68a1154 ed0c441 eb1f440 93ba032 eb1f440 93ba032 eb1f440 93ba032 eb1f440 93ba032 eb1f440 93ba032 eb1f440 93ba032 eb1f440 8f299bb eb1f440 8f299bb eb1f440 8f299bb eb1f440 8f299bb eb1f440 4b51a5a eb1f440 52855ba 9ea91db 52855ba 58fbefd eb1f440 58fbefd eb1f440 58fbefd 680cff7 eb1f440 0a00489 4b51a5a eb1f440 680cff7 e2e4921 3898702 52855ba 3898702 b7d5afb e2e4921 58fbefd |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 |
### ----------------------------- ###
### libraries ###
### ----------------------------- ###
import streamlit as st
import pickle as pkl
import pandas as pd
import numpy as np
from sklearn.model_selection import train_test_split
from sklearn.linear_model import LogisticRegression
from sklearn import metrics
import os
### ----------------------------- ###
### interface setup ###
### ----------------------------- ###
with open('styles.css') as f:
st.markdown(f'<style>{f.read()}</style>', unsafe_allow_html=True)
st.title('Mental Health App')
st.subheader('Feeling like you might need a better coping strategy? Take the quiz to get a personalized recommendation using AI.')
### ------------------------------ ###
### data transformation ###
### ------------------------------ ###
def load_dataset():
# load dataset
uncleaned_data = pd.read_csv('data.csv')
# remove timestamp from dataset (always first column)
uncleaned_data = uncleaned_data.iloc[: , 1:]
data = pd.DataFrame()
# keep track of which columns are categorical and what
# those columns' value mappings are
# structure: {colname1: {...}, colname2: {...} }
cat_value_dicts = {}
final_colname = uncleaned_data.columns[len(uncleaned_data.columns) - 1]
# for each column...
for (colname, colval) in uncleaned_data.iteritems():
# check if col is already a number; if so, add col directly
# to new dataframe and skip to next column
if isinstance(colval.values[0], (np.integer, float)):
data[colname] = uncleaned_data[colname].copy()
continue
# structure: {0: "lilac", 1: "blue", ...}
new_dict = {}
val = 0 # first index per column
transformed_col_vals = [] # new numeric datapoints
# if not, for each item in that column...
for (row, item) in enumerate(colval.values):
# if item is not in this col's dict...
if item not in new_dict:
new_dict[item] = val
val += 1
# then add numerical value to transformed dataframe
transformed_col_vals.append(new_dict[item])
# reverse dictionary only for final col (0, 1) => (vals)
if colname == final_colname:
new_dict = {value : key for (key, value) in new_dict.items()}
cat_value_dicts[colname] = new_dict
data[colname] = transformed_col_vals
### -------------------------------- ###
### model training ###
### -------------------------------- ###
def train_model():
# select features and predicton; automatically selects last column as prediction
cols = len(data.columns)
num_features = cols - 1
x = data.iloc[: , :num_features]
y = data.iloc[: , num_features:]
# split data into training and testing sets
x_train, x_test, y_train, y_test = train_test_split(x, y, test_size=0.25)
# instantiate the model (using default parameters)
model = LogisticRegression()
model.fit(x_train, y_train.values.ravel())
y_pred = model.predict(x_test)
# save the model to file
pkl.dump(model, 'model.pkl')
### -------------------------------- ###
### rerun logic ###
### -------------------------------- ###
if not os.path.exists('model.pkl'):
load_dataset()
train_model()
model = pkl.load('model.pkl')
### ------------------------------- ###
### interface creation ###
### ------------------------------- ###
# predictor for generic number of features
def general_predictor(input_list):
features = []
# transform categorical input
for colname, input in zip(data.columns, input_list):
if (colname in cat_value_dicts):
features.append(cat_value_dicts[colname][input])
else:
features.append(input)
# predict single datapoint
new_input = [features]
result = model.predict(new_input)
return cat_value_dicts[final_colname][result[0]]
def get_feat():
feats = [abs(x) for x in model.coef_[0]]
# max_val = max(feats)
# idx = feats.index(max_val)
return str(feats) # data.columns[idx]
form = st.form('ml-inputs')
# add data labels to replace those lost via star-args
inputls = []
for colname in data.columns:
# skip last column
if colname == final_colname:
continue
# access categories dict if data is categorical
# otherwise, just use a number input
if colname in cat_value_dicts:
radio_options = list(cat_value_dicts[colname].keys())
inputls.append(form.selectbox(colname, radio_options))
else:
# add numerical input
inputls.append(form.number_imput(colname))
# generate gradio interface
if form.form_submit_button("Submit to get your recommendation!"):
prediction = general_predictor(inputls)
form.subheader(prediction)
col1, col2 = st.columns(2)
col1.metric("Number of Options", len(cat_value_dicts[final_colname]))
col2.metric("Model Accuracy", str(round(metrics.accuracy_score(y_test, y_pred) * 100, 1)) + '%')
st.metric("Most Important Question", get_feat())
with open('info.md') as f:
st.markdown(f.read())
|