Spaces:
Runtime error
Runtime error
Isabel Gwara
commited on
Commit
·
c1478a9
1
Parent(s):
5f22042
Update app.py
Browse files
app.py
CHANGED
@@ -28,58 +28,58 @@ st.subheader('Feeling like you might need a better coping strategy? Take the qui
|
|
28 |
### data transformation ###
|
29 |
### ------------------------------ ###
|
30 |
|
31 |
-
|
32 |
-
|
33 |
-
|
34 |
|
35 |
-
|
36 |
-
|
37 |
-
|
38 |
|
39 |
-
|
40 |
-
|
41 |
-
|
42 |
-
|
43 |
-
|
44 |
|
45 |
-
|
46 |
-
|
47 |
|
48 |
-
|
49 |
-
|
50 |
-
|
51 |
-
|
52 |
-
|
53 |
|
54 |
-
|
55 |
-
|
56 |
-
|
57 |
-
|
58 |
|
59 |
-
|
60 |
-
|
61 |
|
62 |
-
|
63 |
-
|
64 |
-
|
65 |
-
|
66 |
|
67 |
-
|
68 |
-
|
69 |
|
70 |
-
|
71 |
-
|
72 |
-
|
73 |
|
74 |
-
|
75 |
-
|
76 |
|
77 |
|
78 |
### -------------------------------- ###
|
79 |
### model training ###
|
80 |
### -------------------------------- ###
|
81 |
|
82 |
-
|
83 |
# select features and predicton; automatically selects last column as prediction
|
84 |
cols = len(data.columns)
|
85 |
num_features = cols - 1
|
|
|
28 |
### data transformation ###
|
29 |
### ------------------------------ ###
|
30 |
|
31 |
+
|
32 |
+
# load dataset
|
33 |
+
uncleaned_data = pd.read_csv('data.csv')
|
34 |
|
35 |
+
# remove timestamp from dataset (always first column)
|
36 |
+
uncleaned_data = uncleaned_data.iloc[: , 1:]
|
37 |
+
data = pd.DataFrame()
|
38 |
|
39 |
+
# keep track of which columns are categorical and what
|
40 |
+
# those columns' value mappings are
|
41 |
+
# structure: {colname1: {...}, colname2: {...} }
|
42 |
+
cat_value_dicts = {}
|
43 |
+
final_colname = uncleaned_data.columns[len(uncleaned_data.columns) - 1]
|
44 |
|
45 |
+
# for each column...
|
46 |
+
for (colname, colval) in uncleaned_data.iteritems():
|
47 |
|
48 |
+
# check if col is already a number; if so, add col directly
|
49 |
+
# to new dataframe and skip to next column
|
50 |
+
if isinstance(colval.values[0], (np.integer, float)):
|
51 |
+
data[colname] = uncleaned_data[colname].copy()
|
52 |
+
continue
|
53 |
|
54 |
+
# structure: {0: "lilac", 1: "blue", ...}
|
55 |
+
new_dict = {}
|
56 |
+
val = 0 # first index per column
|
57 |
+
transformed_col_vals = [] # new numeric datapoints
|
58 |
|
59 |
+
# if not, for each item in that column...
|
60 |
+
for (row, item) in enumerate(colval.values):
|
61 |
|
62 |
+
# if item is not in this col's dict...
|
63 |
+
if item not in new_dict:
|
64 |
+
new_dict[item] = val
|
65 |
+
val += 1
|
66 |
|
67 |
+
# then add numerical value to transformed dataframe
|
68 |
+
transformed_col_vals.append(new_dict[item])
|
69 |
|
70 |
+
# reverse dictionary only for final col (0, 1) => (vals)
|
71 |
+
if colname == final_colname:
|
72 |
+
new_dict = {value : key for (key, value) in new_dict.items()}
|
73 |
|
74 |
+
cat_value_dicts[colname] = new_dict
|
75 |
+
data[colname] = transformed_col_vals
|
76 |
|
77 |
|
78 |
### -------------------------------- ###
|
79 |
### model training ###
|
80 |
### -------------------------------- ###
|
81 |
|
82 |
+
def train_model():
|
83 |
# select features and predicton; automatically selects last column as prediction
|
84 |
cols = len(data.columns)
|
85 |
num_features = cols - 1
|