### ----------------------------- ### ### libraries ### ### ----------------------------- ### import streamlit as st import pickle as pkl import pandas as pd import numpy as np from sklearn.model_selection import train_test_split from sklearn.linear_model import LogisticRegression from sklearn import metrics ### ----------------------------- ### ### interface setup ### ### ----------------------------- ### with open('styles.css') as f: st.markdown(f'', unsafe_allow_html=True) ### ------------------------------ ### ### data transformation ### ### ------------------------------ ### # load dataset uncleaned_data = pd.read_csv('data.csv') # remove timestamp from dataset (always first column) uncleaned_data = uncleaned_data.iloc[: , 1:] data = pd.DataFrame() # keep track of which columns are categorical and what # those columns' value mappings are # structure: {colname1: {...}, colname2: {...} } cat_value_dicts = {} final_colname = uncleaned_data.columns[len(uncleaned_data.columns) - 1] # for each column... for (colname, colval) in uncleaned_data.iteritems(): # check if col is already a number; if so, add col directly # to new dataframe and skip to next column if isinstance(colval.values[0], (np.integer, float)): data[colname] = uncleaned_data[colname].copy() continue # structure: {0: "lilac", 1: "blue", ...} new_dict = {} val = 0 # first index per column transformed_col_vals = [] # new numeric datapoints # if not, for each item in that column... for (row, item) in enumerate(colval.values): # if item is not in this col's dict... if item not in new_dict: new_dict[item] = val val += 1 # then add numerical value to transformed dataframe transformed_col_vals.append(new_dict[item]) # reverse dictionary only for final col (0, 1) => (vals) if colname == final_colname: new_dict = {value : key for (key, value) in new_dict.items()} cat_value_dicts[colname] = new_dict data[colname] = transformed_col_vals ### -------------------------------- ### ### model training ### ### -------------------------------- ### def train_model(): # select features and prediction; automatically selects last column as prediction cols = len(data.columns) num_features = cols - 1 x = data.iloc[: , :num_features] y = data.iloc[: , num_features:] # split data into training and testing sets x_train, x_test, y_train, y_test = train_test_split(x, y, test_size=0.25) # instantiate the model (using default parameters) model = LogisticRegression() model.fit(x_train, y_train.values.ravel()) y_pred = model.predict(x_test) # save the model to file using the pickle package with open('model.pkl', 'wb') as f: pkl.dump(model, f) # save model accuracy to file using the pickle package with open('acc.txt', 'w+') as f: acc = metrics.accuracy_score(y_test, y_pred) f.write(str(round(acc * 100, 1)) + '%') return model ### -------------------------------- ### ### rerun logic ### ### -------------------------------- ### # check to see if this is the first time running the script, # if the model has already been trained and saved, load it try: with open('model.pkl', 'rb') as f: model = pkl.load(f) # if this is the first time running the script, train the model # and save it to the file model.pkl except FileNotFoundError as e: model = train_model() # read the model accuracy from file with open('acc.txt', 'r') as f: acc = f.read() ### ------------------------------- ### ### interface creation ### ### ------------------------------- ### # uses the logistic regression to predict for a generic number # of features def general_predictor(input_list): features = [] # transform categorical input for colname, input in zip(data.columns, input_list): if (colname in cat_value_dicts): features.append(cat_value_dicts[colname][input]) else: features.append(input) # predict single datapoint new_input = [features] result = model.predict(new_input) return cat_value_dicts[final_colname][result[0]] def get_feat(): feats = [abs(x) for x in model.coef_[0]] max_val = max(feats) idx = feats.index(max_val) return data.columns[idx] with open('info.md') as f: st.title(f.readline()) st.subheader('Take the quiz to get a personalized recommendation using AI.') form = st.form('ml-inputs') # add data labels to replace those lost via star-args inputls = [] for colname in data.columns: # skip last column if colname == final_colname: continue # access categories dict if data is categorical # otherwise, just use a number input if colname in cat_value_dicts: radio_options = list(cat_value_dicts[colname].keys()) inputls.append(form.selectbox(colname, radio_options)) else: # add numerical input inputls.append(form.number_imput(colname)) # generate gradio interface if form.form_submit_button("Submit to get your recommendation!"): prediction = general_predictor(inputls) form.subheader(prediction) col1, col2 = st.columns(2) col1.metric("Number of Different Possible Results", len(cat_value_dicts[final_colname])) col2.metric("Model Accuracy", acc) st.metric("Most Important Question", "") st.subheader(get_feat()) st.markdown("***") with open('info.md') as f: f.readline() st.markdown(f.read())