Add Gradio app for PEFT model
Browse files- app.py +29 -59
- requirements.txt +3 -1
app.py
CHANGED
@@ -1,63 +1,33 @@
|
|
1 |
import gradio as gr
|
2 |
-
from
|
3 |
-
|
4 |
-
|
5 |
-
|
6 |
-
|
7 |
-
|
8 |
-
|
9 |
-
|
10 |
-
|
11 |
-
|
12 |
-
|
13 |
-
|
14 |
-
|
15 |
-
|
16 |
-
|
17 |
-
)
|
18 |
-
|
19 |
-
|
20 |
-
|
21 |
-
|
22 |
-
|
23 |
-
|
24 |
-
|
25 |
-
|
26 |
-
|
27 |
-
|
28 |
-
|
29 |
-
|
30 |
-
|
31 |
-
messages,
|
32 |
-
max_tokens=max_tokens,
|
33 |
-
stream=True,
|
34 |
-
temperature=temperature,
|
35 |
-
top_p=top_p,
|
36 |
-
):
|
37 |
-
token = message.choices[0].delta.content
|
38 |
-
|
39 |
-
response += token
|
40 |
-
yield response
|
41 |
-
|
42 |
-
|
43 |
-
"""
|
44 |
-
For information on how to customize the ChatInterface, peruse the gradio docs: https://www.gradio.app/docs/chatinterface
|
45 |
-
"""
|
46 |
-
demo = gr.ChatInterface(
|
47 |
-
respond,
|
48 |
-
additional_inputs=[
|
49 |
-
gr.Textbox(value="You are a friendly Chatbot.", label="System message"),
|
50 |
-
gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max new tokens"),
|
51 |
-
gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"),
|
52 |
-
gr.Slider(
|
53 |
-
minimum=0.1,
|
54 |
-
maximum=1.0,
|
55 |
-
value=0.95,
|
56 |
-
step=0.05,
|
57 |
-
label="Top-p (nucleus sampling)",
|
58 |
-
),
|
59 |
-
],
|
60 |
-
)
|
61 |
|
62 |
|
63 |
if __name__ == "__main__":
|
|
|
1 |
import gradio as gr
|
2 |
+
from transformers import AutoTokenizer
|
3 |
+
from peft import PeftModel, PeftConfig
|
4 |
+
from transformers import AutoModelForCausalLM
|
5 |
+
|
6 |
+
# Load the PEFT model configuration and model
|
7 |
+
config = PeftConfig.from_pretrained("isashap/contexttrained-validationloss-gpt2FINAL")
|
8 |
+
base_model = AutoModelForCausalLM.from_pretrained("gpt2")
|
9 |
+
model = PeftModel.from_pretrained(base_model, "isashap/contexttrained-validationloss-gpt2FINAL")
|
10 |
+
|
11 |
+
# Load the tokenizer
|
12 |
+
tokenizer = AutoTokenizer.from_pretrained("gpt2")
|
13 |
+
|
14 |
+
# Define the prediction function
|
15 |
+
def predict_stock(input_text):
|
16 |
+
# Tokenize the input
|
17 |
+
inputs = tokenizer(input_text, return_tensors="pt")
|
18 |
+
# Generate output using the model
|
19 |
+
outputs = model.generate(**inputs, max_length=50, num_return_sequences=1)
|
20 |
+
# Decode the output
|
21 |
+
generated_text = tokenizer.decode(outputs[0], skip_special_tokens=True)
|
22 |
+
return generated_text
|
23 |
+
|
24 |
+
demo = gr.Interface(
|
25 |
+
fn=predict_stock,
|
26 |
+
inputs=gr.Textbox(lines=2, label="Input Text (e.g., stock-related news)"),
|
27 |
+
outputs=gr.Textbox(label="Prediction"),
|
28 |
+
title="Stock Prediction with PEFT Model",
|
29 |
+
description="A demo that uses a fine-tuned GPT-2 model with PEFT to predict stock outcomes based on input text."
|
30 |
+
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
31 |
|
32 |
|
33 |
if __name__ == "__main__":
|
requirements.txt
CHANGED
@@ -1 +1,3 @@
|
|
1 |
-
huggingface_hub==0.25.2
|
|
|
|
|
|
1 |
+
huggingface_hub==0.25.2
|
2 |
+
transformers
|
3 |
+
peft
|