Spaces:
Sleeping
Sleeping
File size: 4,853 Bytes
cc93217 449fa63 cc93217 ffe7e6e 449fa63 1a34160 449fa63 1a34160 dd3d8fe ff2dd67 1a34160 449fa63 8ae7246 9f266a1 8ae7246 cc93217 dd3d8fe 9f266a1 dd3d8fe de4004c dd3d8fe de4004c cc93217 fe87044 1a34160 de4004c 1a34160 cc93217 8ae7246 1a34160 8ae7246 1a34160 65d65e8 cc93217 8ae7246 9f266a1 8ae7246 ff2dd67 8ae7246 cc93217 8ae7246 1a34160 8ae7246 1a34160 8ae7246 8dcf202 8ae7246 1a34160 cc93217 de4004c 8ae7246 cc93217 de4004c cc93217 8ae7246 1a34160 cc93217 221a591 cc93217 8ae7246 cc93217 65d65e8 8ae7246 cc93217 8ae7246 cc93217 8ae7246 cc93217 8ae7246 d233aaa 8ae7246 d233aaa 8ae7246 cc93217 179ea90 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 |
import gradio as gr
from langchain.document_loaders import OnlinePDFLoader
from langchain.text_splitter import CharacterTextSplitter
from langchain.prompts import PromptTemplate
from langchain.llms import HuggingFaceHub
# from langhchain.llms import openai
from langchain.llms import OpenAI
from langchain.vectorstores import Chroma
from langchain.chains import RetrievalQA
from langchain.document_loaders import PyPDFLoader
from langchain.memory import VectorStoreRetrieverMemory
from langchain.chains import RetrievalQAWithSourcesChain
from langchain.memory import ConversationBufferMemory
from langchain.embeddings import CohereEmbeddings
from langchain.embeddings import HuggingFaceHubEmbeddings, OpenAIEmbeddings
import dotenv
import os
from prompt.prompt_template import template
dotenv.load_dotenv()
text_splitter = CharacterTextSplitter(
chunk_size=350,
chunk_overlap=0
)
# llm= HuggingFaceHub(
# repo_id="HuggingFaceH4/zephyr-7b-beta",
# model_kwargs={
# "temperature":0.1,
# "max_new_tokens":300
# }
# )
# llm= OpenAI()
from langchain.chat_models import ChatOpenAI
llm= chat = ChatOpenAI(
model_name='gpt-3.5-turbo-16k',
# temperature = self.config.llm.temperature,
# openai_api_key = self.config.llm.openai_api_key,
# max_tokens=self.config.llm.max_tokens
)
global qa
COHERE_API_KEY = os.getenv("COHERE_API_KEY")
embeddings = CohereEmbeddings(
model="embed-english-v3.0",
cohere_api_key=COHERE_API_KEY
)
def loading_pdf():
return "Loading..."
def pdf_changes(pdf_doc):
embeddings = CohereEmbeddings(
model="embed-english-light-v3.0",
)
loader = PyPDFLoader(pdf_doc.name)
documents = loader.load()
texts = text_splitter.split_documents(documents)
db = Chroma.from_documents(texts, embeddings)
retriever = db.as_retriever()
memory = ConversationBufferMemory(
memory_key="chat_history",
input_key="human_input"
)
prompt = PromptTemplate(
input_variables=[
"chat_history",
"human_input",
"context"
],
template=template
)
global qa
prompt = PromptTemplate(
input_variables=[
"history",
"context",
"question"
],
template=template,
)
memory = ConversationBufferMemory(
memory_key="history",
input_key="question"
)
qa = RetrievalQAWithSourcesChain.from_chain_type(
llm=llm,
retriever=retriever,
return_source_documents=True,
verbose=True,
chain_type_kwargs={
"verbose": True,
"memory": memory,
"prompt": prompt,
"document_variable_name": "context"
}
)
return "Ready"
def add_text(history, text):
history = history + [(text, None)]
return history, ""
def bot(history):
response = infer(history[-1][0],"")
history[-1][1] = response['answer']
return history
def infer(question, history) -> dict:
query = question
result = qa({"query": query, "history": history, "question": question})
return result
css="""
#col-container {max-width: 700px; margin-left: auto; margin-right: auto;}
"""
title = """
<div style="text-align: center;max-width: 700px;">
<h1>Insurance Assistant 💼</h1>
<p style="text-align: center;">Upload a .PDF from your computer, click the "Load PDF to LangChain" button, <br />
when everything is ready, you can start asking questions about the pdf ;)</p>
</div>
"""
with gr.Blocks(css=css) as demo:
with gr.Column(elem_id="col-container"):
gr.HTML(title)
with gr.Column():
pdf_doc = gr.File()
with gr.Row():
langchain_status = gr.Textbox(
label="Status",
placeholder="",
interactive=False
)
load_pdf = gr.Button("Load pdf to langchain")
chatbot = gr.Chatbot(
[],
elem_id="chatbot"
) #.style(height=350)
with gr.Row():
question = gr.Textbox(
label="Question",
placeholder="Type your question and hit Enter "
)
load_pdf.click(
loading_pdf,
None,
langchain_status,
queue=False
)
load_pdf.click(
pdf_changes,
pdf_doc,
langchain_status,
queue=False
)
question.submit(
add_text,
[
chatbot,
question
],
[
chatbot,
question
]
).then(
bot,
chatbot,
chatbot
)
demo.launch()
|