Spaces:
Sleeping
Sleeping
import gradio as gr | |
from langchain.document_loaders import OnlinePDFLoader | |
from langchain.text_splitter import CharacterTextSplitter | |
from langchain.prompts import PromptTemplate | |
from langchain.llms import HuggingFaceHub | |
# from langhchain.llms import openai | |
from langchain.llms import OpenAI | |
from langchain.vectorstores import Chroma | |
from langchain.chains import RetrievalQA | |
from langchain.document_loaders import PyPDFLoader | |
from langchain.memory import VectorStoreRetrieverMemory | |
from langchain.chains import RetrievalQAWithSourcesChain | |
from langchain.memory import ConversationBufferMemory | |
from langchain.embeddings import CohereEmbeddings | |
from langchain.embeddings import HuggingFaceHubEmbeddings, OpenAIEmbeddings | |
import dotenv | |
import os | |
from prompt.prompt_template import template | |
dotenv.load_dotenv() | |
text_splitter = CharacterTextSplitter( | |
chunk_size=350, | |
chunk_overlap=0 | |
) | |
# llm= HuggingFaceHub( | |
# repo_id="HuggingFaceH4/zephyr-7b-beta", | |
# model_kwargs={ | |
# "temperature":0.1, | |
# "max_new_tokens":300 | |
# } | |
# ) | |
# llm= OpenAI() | |
from langchain.chat_models import ChatOpenAI | |
llm= chat = ChatOpenAI( | |
model_name='gpt-3.5-turbo-16k', | |
# temperature = self.config.llm.temperature, | |
# openai_api_key = self.config.llm.openai_api_key, | |
# max_tokens=self.config.llm.max_tokens | |
) | |
global qa | |
COHERE_API_KEY = os.getenv("COHERE_API_KEY") | |
embeddings = CohereEmbeddings( | |
model="embed-english-v3.0", | |
cohere_api_key=COHERE_API_KEY | |
) | |
def loading_pdf(): | |
return "Loading..." | |
def pdf_changes(pdf_doc): | |
embeddings = CohereEmbeddings( | |
model="embed-english-light-v3.0", | |
) | |
loader = PyPDFLoader(pdf_doc.name) | |
documents = loader.load() | |
texts = text_splitter.split_documents(documents) | |
db = Chroma.from_documents(texts, embeddings) | |
retriever = db.as_retriever() | |
memory = ConversationBufferMemory( | |
memory_key="chat_history", | |
input_key="human_input" | |
) | |
prompt = PromptTemplate( | |
input_variables=[ | |
"chat_history", | |
"human_input", | |
"context" | |
], | |
template=template | |
) | |
chain_type_kwargs = {"prompt": prompt} | |
global qa | |
prompt = PromptTemplate( | |
input_variables=[ | |
"history", | |
"context", | |
"question" | |
], | |
template=template, | |
) | |
memory = ConversationBufferMemory( | |
memory_key="history", | |
input_key="question" | |
) | |
qa = RetrievalQAWithSourcesChain.from_chain_type( | |
llm=flan_ul2, | |
retriever=retriever, | |
return_source_documents=True, | |
verbose=True, | |
chain_type_kwargs={ | |
"verbose": True, | |
"memory": memory, | |
"prompt": prompt, | |
"document_variable_name": "context" | |
} | |
) | |
return "Ready" | |
def add_text(history, text): | |
history = history + [(text, None)] | |
return history, "" | |
def bot(history): | |
response = infer(history[-1][0],"") | |
history[-1][1] = response['answer'] | |
return history | |
def infer(question, history) -> dict: | |
query = question | |
result = qa({"query": query, "history": history, "question": question}) | |
return result | |
css=""" | |
#col-container {max-width: 700px; margin-left: auto; margin-right: auto;} | |
""" | |
title = """ | |
<div style="text-align: center;max-width: 700px;"> | |
<h1>Chat with PDF</h1> | |
<p style="text-align: center;">Upload a .PDF from your computer, click the "Load PDF to LangChain" button, <br /> | |
when everything is ready, you can start asking questions about the pdf ;)</p> | |
</div> | |
""" | |
with gr.Blocks(css=css) as demo: | |
with gr.Column(elem_id="col-container"): | |
gr.HTML(title) | |
with gr.Column(): | |
pdf_doc = gr.File() | |
with gr.Row(): | |
langchain_status = gr.Textbox( | |
label="Status", | |
placeholder="", | |
interactive=False | |
) | |
load_pdf = gr.Button("Load pdf to langchain") | |
chatbot = gr.Chatbot( | |
[], | |
elem_id="chatbot" | |
) #.style(height=350) | |
with gr.Row(): | |
question = gr.Textbox( | |
label="Question", | |
placeholder="Type your question and hit Enter " | |
) | |
load_pdf.click( | |
loading_pdf, | |
None, | |
langchain_status, | |
queue=False | |
) | |
load_pdf.click( | |
pdf_changes, | |
pdf_doc, | |
langchain_status, | |
queue=False | |
) | |
question.submit | |
(add_text, | |
[ | |
chatbot, | |
question | |
], | |
[ | |
chatbot, | |
question] | |
).then( | |
bot, | |
chatbot, | |
chatbot | |
) | |
demo.launch() | |