isayahc's picture
refactored and gave functions more appropiate names
dd3d8fe verified
raw
history blame
4.88 kB
import gradio as gr
from langchain.document_loaders import OnlinePDFLoader
from langchain.text_splitter import CharacterTextSplitter
from langchain.prompts import PromptTemplate
from langchain.llms import HuggingFaceHub
# from langhchain.llms import openai
from langchain.llms import OpenAI
from langchain.vectorstores import Chroma
from langchain.chains import RetrievalQA
from langchain.document_loaders import PyPDFLoader
from langchain.memory import VectorStoreRetrieverMemory
from langchain.chains import RetrievalQAWithSourcesChain
from langchain.memory import ConversationBufferMemory
from langchain.embeddings import CohereEmbeddings
from langchain.embeddings import HuggingFaceHubEmbeddings, OpenAIEmbeddings
import dotenv
import os
from prompt.prompt_template import template
dotenv.load_dotenv()
text_splitter = CharacterTextSplitter(
chunk_size=350,
chunk_overlap=0
)
# llm= HuggingFaceHub(
# repo_id="HuggingFaceH4/zephyr-7b-beta",
# model_kwargs={
# "temperature":0.1,
# "max_new_tokens":300
# }
# )
# llm= OpenAI()
from langchain.chat_models import ChatOpenAI
llm= chat = ChatOpenAI(
model_name='gpt-3.5-turbo-16k',
# temperature = self.config.llm.temperature,
# openai_api_key = self.config.llm.openai_api_key,
# max_tokens=self.config.llm.max_tokens
)
global qa
COHERE_API_KEY = os.getenv("COHERE_API_KEY")
embeddings = CohereEmbeddings(
model="embed-english-v3.0",
cohere_api_key=COHERE_API_KEY
)
def loading_pdf():
return "Loading..."
def pdf_changes(pdf_doc):
embeddings = CohereEmbeddings(
model="embed-english-light-v3.0",
)
loader = PyPDFLoader(pdf_doc.name)
documents = loader.load()
texts = text_splitter.split_documents(documents)
db = Chroma.from_documents(texts, embeddings)
retriever = db.as_retriever()
memory = ConversationBufferMemory(
memory_key="chat_history",
input_key="human_input"
)
prompt = PromptTemplate(
input_variables=[
"chat_history",
"human_input",
"context"
],
template=template
)
chain_type_kwargs = {"prompt": prompt}
global qa
prompt = PromptTemplate(
input_variables=[
"history",
"context",
"question"
],
template=template,
)
memory = ConversationBufferMemory(
memory_key="history",
input_key="question"
)
qa = RetrievalQAWithSourcesChain.from_chain_type(
llm=flan_ul2,
retriever=retriever,
return_source_documents=True,
verbose=True,
chain_type_kwargs={
"verbose": True,
"memory": memory,
"prompt": prompt,
"document_variable_name": "context"
}
)
return "Ready"
def add_text(history, text):
history = history + [(text, None)]
return history, ""
def bot(history):
response = infer(history[-1][0],"")
history[-1][1] = response['answer']
return history
def infer(question, history) -> dict:
query = question
result = qa({"query": query, "history": history, "question": question})
return result
css="""
#col-container {max-width: 700px; margin-left: auto; margin-right: auto;}
"""
title = """
<div style="text-align: center;max-width: 700px;">
<h1>Chat with PDF</h1>
<p style="text-align: center;">Upload a .PDF from your computer, click the "Load PDF to LangChain" button, <br />
when everything is ready, you can start asking questions about the pdf ;)</p>
</div>
"""
with gr.Blocks(css=css) as demo:
with gr.Column(elem_id="col-container"):
gr.HTML(title)
with gr.Column():
pdf_doc = gr.File()
with gr.Row():
langchain_status = gr.Textbox(
label="Status",
placeholder="",
interactive=False
)
load_pdf = gr.Button("Load pdf to langchain")
chatbot = gr.Chatbot(
[],
elem_id="chatbot"
) #.style(height=350)
with gr.Row():
question = gr.Textbox(
label="Question",
placeholder="Type your question and hit Enter "
)
load_pdf.click(
loading_pdf,
None,
langchain_status,
queue=False
)
load_pdf.click(
pdf_changes,
pdf_doc,
langchain_status,
queue=False
)
question.submit
(add_text,
[
chatbot,
question
],
[
chatbot,
question]
).then(
bot,
chatbot,
chatbot
)
demo.launch()