Spaces:
Sleeping
Sleeping
import gradio as gr | |
from langchain.document_loaders import OnlinePDFLoader | |
from langchain.text_splitter import CharacterTextSplitter | |
from langchain.prompts import PromptTemplate | |
# from langhchain.llms import openai | |
from langchain.llms import OpenAI | |
text_splitter = CharacterTextSplitter(chunk_size=350, chunk_overlap=0) | |
from langchain.llms import HuggingFaceHub | |
# flan_ul2 = HuggingFaceHub(repo_id="HuggingFaceH4/zephyr-7b-beta", model_kwargs={"temperature":0.1, "max_new_tokens":300}) | |
flan_ul2 = OpenAI() | |
global qa | |
from langchain.embeddings import HuggingFaceHubEmbeddings, OpenAIEmbeddings | |
# embeddings = HuggingFaceHubEmbeddings() | |
embeddings = OpenAIEmbeddings() | |
from langchain.vectorstores import Chroma | |
from langchain.chains import RetrievalQA | |
from langchain.document_loaders import PyPDFLoader | |
def loading_pdf(): | |
return "Loading..." | |
def pdf_changes(pdf_doc): | |
# loader = OnlinePDFLoader(pdf_doc.name) | |
loader = PyPDFLoader(pdf_doc.name) | |
documents = loader.load() | |
texts = text_splitter.split_documents(documents) | |
db = Chroma.from_documents(texts, embeddings) | |
retriever = db.as_retriever() | |
prompt_template = """You have been given a pdf or pdfs. You must search these pdfs. | |
If you don't know the answer, just say that you don't know, don't try to make up an answer. | |
Only answer the question. | |
{context} | |
Question: {sample.question} | |
Answer:""" | |
PROMPT = PromptTemplate( | |
template=prompt_template, input_variables=["context", "question"] | |
) | |
chain_type_kwargs = {"prompt": PROMPT} | |
global qa | |
qa = RetrievalQA.from_chain_type( | |
llm=flan_ul2, | |
chain_type="stuff", | |
retriever=retriever, | |
return_source_documents=True, | |
chain_type_kwargs=chain_type_kwargs, | |
) | |
return "Ready" | |
def add_text(history, text): | |
history = history + [(text, None)] | |
return history, "" | |
def bot(history): | |
response = infer(history[-1][0]) | |
history[-1][1] = response['result'] | |
return history | |
def infer(question): | |
query = question | |
result = qa({"query": query}) | |
return result | |
css=""" | |
#col-container {max-width: 700px; margin-left: auto; margin-right: auto;} | |
""" | |
title = """ | |
<div style="text-align: center;max-width: 700px;"> | |
<h1>Chat with PDF</h1> | |
<p style="text-align: center;">Upload a .PDF from your computer, click the "Load PDF to LangChain" button, <br /> | |
when everything is ready, you can start asking questions about the pdf ;)</p> | |
</div> | |
""" | |
with gr.Blocks(css=css) as demo: | |
with gr.Column(elem_id="col-container"): | |
gr.HTML(title) | |
# with gr.Blocks() as demo: | |
with gr.Column(): | |
pdf_doc = gr.File() | |
# pdf_doc = gr.File(label="Load a pdf", file_types=['.pdf'], type="filepath") #try filepath for type if binary does not work | |
with gr.Row(): | |
langchain_status = gr.Textbox(label="Status", placeholder="", interactive=False) | |
load_pdf = gr.Button("Load pdf to langchain") | |
chatbot = gr.Chatbot([], elem_id="chatbot") #.style(height=350) | |
with gr.Row(): | |
question = gr.Textbox(label="Question", placeholder="Type your question and hit Enter ") | |
load_pdf.click(loading_pdf, None, langchain_status, queue=False) | |
load_pdf.click(pdf_changes, pdf_doc, langchain_status, queue=False) | |
question.submit(add_text, [chatbot, question], [chatbot, question]).then( | |
bot, chatbot, chatbot | |
) | |
demo.launch() | |