Spaces:
Runtime error
Runtime error
File size: 3,527 Bytes
b49a392 3795f1b fa8c523 3795f1b b49a392 3795f1b cd31e3b fa8c523 3795f1b 6e4f066 3795f1b cd31e3b 3795f1b 734a0bd cd31e3b 3795f1b cd31e3b 3795f1b cd31e3b 734a0bd 6e4f066 3795f1b cd31e3b 6e4f066 3795f1b |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 |
import gradio as gr
from structured_apparatus_chain import (
arxiv_chain as apparatus_arxiv_chain,
pub_med_chain as apparatus_pub_med_chain,
wikipedia_chain as apparatus_wikipedia_chain
)
from structured_experiment_chain import (
arxiv_chain as experiment_arxiv_chain,
pub_med_chain as experiment_pub_med_chain,
wikipedia_chain as experiment_wikipedia_chain
)
from weaviate_utils import init_client
apparatus_retriever_options = {
"Arxiv": apparatus_arxiv_chain,
"PubMed": apparatus_pub_med_chain,
"Wikipedia": apparatus_wikipedia_chain,
}
experiment_retriever_options = {
"Arxiv": experiment_arxiv_chain,
"PubMed": experiment_pub_med_chain,
"Wikipedia": experiment_wikipedia_chain,
}
def generate_apparatus(input_text, retriever_choice):
selected_chain = apparatus_retriever_options[retriever_choice]
output_text = selected_chain.invoke(input_text)
return output_text
def generate_experiment(input_text, retriever_choice):
selected_chain = experiment_retriever_options[retriever_choice]
exp_data = output_text = selected_chain.invoke(input_text)
weaviate_client = init_client()
science_experiment_collection = weaviate_client.collections.get("ScienceEperiment")
exp_uuid = science_experiment_collection.data.insert({
# "DateCreated": datetime.now(timezone.utc),
"FieldsOfStudy": exp_data['Fields_of_study'],
"Tags": exp_data['Fields_of_study'],
"Experiment_Name": exp_data['Experiment_Name'],
"Material": exp_data['Material'],
"Sources": exp_data['Sources'],
"Protocal": exp_data['Protocal'],
"Purpose_of_Experiments": exp_data['Purpose_of_Experiments'],
"Safety_Precaution": exp_data['Safety_Precuation'], # Corrected spelling mistake
"Level_of_Difficulty": exp_data['Level_of_Difficulty'],
})
return output_text
def process_text(input_text, number):
# Example processing function
weaviate_client = init_client()
science_experiment_collection = weaviate_client.collections.get("ScienceEperiment")
response = science_experiment_collection.query.bm25(
query=input_text,
limit=3
)
return response.objects.__str__()
generate_apparatus_interface = gr.Interface(
fn=generate_apparatus,
inputs=["text", gr.Radio(choices=list(apparatus_retriever_options.keys()), label="Select a retriever", value="Wikipedia")],
outputs="text",
title="Generate Apparatus",
description="I am here to help makers make more and learn the science behind things",
)
generate_experiment_interface = gr.Interface(
fn=generate_experiment,
inputs=["text", gr.Radio(choices=list(experiment_retriever_options.keys()), label="Select a retriever", value="Wikipedia")],
outputs="text",
title="Generate an experiment",
description="I am here to generate and store science experiments for our users",
)
process_text_interface = gr.Interface(
fn=process_text,
inputs=["text", gr.Slider(minimum=2, maximum=6, step=1, value=2, label="Select a number")],
outputs="text",
title="Search Existing Experiments",
description="If you would like an idea of the experiments in the vectorestore here is the place",
)
demo = gr.TabbedInterface([
generate_apparatus_interface,
generate_experiment_interface,
process_text_interface
], ["Generate Apparatus", "Generate Experiment", "Search Existing Experiments"])
if __name__ == "__main__":
demo.launch()
|