File size: 4,987 Bytes
b49a392
1e522dd
 
3795f1b
 
 
 
 
 
 
 
 
 
 
fa8c523
3795f1b
 
 
 
 
b49a392
3795f1b
 
 
 
 
 
 
 
 
1e522dd
 
 
 
 
 
 
 
 
 
 
 
 
3795f1b
 
 
cd31e3b
fa8c523
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3795f1b
 
1e522dd
6e4f066
 
 
 
 
1e522dd
6e4f066
1e522dd
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6e4f066
3795f1b
 
cd31e3b
3795f1b
 
 
734a0bd
 
cd31e3b
3795f1b
cd31e3b
3795f1b
 
cd31e3b
734a0bd
 
1e522dd
 
6e4f066
 
 
 
 
 
1e522dd
 
 
 
 
 
 
 
3795f1b
 
cd31e3b
1e522dd
 
 
3795f1b
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
import gradio as gr
from weaviate_utils import init_client

from structured_apparatus_chain import (
    arxiv_chain as apparatus_arxiv_chain, 
    pub_med_chain as apparatus_pub_med_chain, 
    wikipedia_chain as apparatus_wikipedia_chain
)
from structured_experiment_chain import (
    arxiv_chain as experiment_arxiv_chain, 
    pub_med_chain as experiment_pub_med_chain, 
    wikipedia_chain as experiment_wikipedia_chain
)


apparatus_retriever_options = {
    "Arxiv": apparatus_arxiv_chain,
    "PubMed": apparatus_pub_med_chain,
    "Wikipedia": apparatus_wikipedia_chain,
}

experiment_retriever_options = {
    "Arxiv": experiment_arxiv_chain,
    "PubMed": experiment_pub_med_chain,
    "Wikipedia": experiment_wikipedia_chain,
}

def generate_apparatus(input_text, retriever_choice):
    selected_chain = apparatus_retriever_options[retriever_choice]
    output_text = selected_chain.invoke(input_text)
    weaviate_client = init_client()
    app_components =  output_text["Material"]
    component_collection = weaviate_client.collections.get("Component")
    
    for i in app_components:

        app_uuid = component_collection.data.insert({
            "Tags": output_text['Fields_of_study'],
            "FeildsOfStudy" : output_text['Fields_of_study'],
            "ToolName" : i,
            "UsedInComps" : [input_text]
        })
    
    return output_text

def generate_experiment(input_text, retriever_choice):
    selected_chain = experiment_retriever_options[retriever_choice]
    exp_data = output_text = selected_chain.invoke(input_text)
    
    weaviate_client = init_client()
    
    science_experiment_collection = weaviate_client.collections.get("ScienceEperiment")
    
    exp_uuid = science_experiment_collection.data.insert({
        # "DateCreated": datetime.now(timezone.utc),
        "FieldsOfStudy": exp_data['Fields_of_study'],
        "Tags": exp_data['Fields_of_study'],
        "Experiment_Name": exp_data['Experiment_Name'],
        "Material": exp_data['Material'],
        "Sources": exp_data['Sources'],
        "Protocal": exp_data['Protocal'],
        "Purpose_of_Experiments": exp_data['Purpose_of_Experiments'],
        "Safety_Precaution": exp_data['Safety_Precuation'],  # Corrected spelling mistake
        "Level_of_Difficulty": exp_data['Level_of_Difficulty'],
    })
    return output_text

def search_experiments(input_text, number):
    # Example processing function
    weaviate_client = init_client()
    science_experiment_collection = weaviate_client.collections.get("ScienceEperiment")
    response = science_experiment_collection.query.bm25(
            query=input_text,
            limit=number
        )
    weaviate_client.close()
    response_objects_string = "\n\n".join([str(obj) for obj in response.objects])
    return response_objects_string

def search_apparatus(input_text, number):
    # Example processing function
    weaviate_client = init_client()
    component_collection = weaviate_client.collections.get("Component")
    response = component_collection.query.bm25(
            query=input_text,
            limit=number
        )
    # print(response.objects.__str__())
    response_objects_string = "\n\n".join([str(obj) for obj in response.objects])
    weaviate_client.close()
    
    return response_objects_string

generate_apparatus_interface = gr.Interface(
    fn=generate_apparatus,
    inputs=["text", gr.Radio(choices=list(apparatus_retriever_options.keys()), label="Select a retriever", value="Wikipedia")],
    outputs="text",
    title="Generate Apparatus",
    description="I am here to help makers make more and learn the science behind things",
)

generate_experiment_interface = gr.Interface(
    fn=generate_experiment,
    inputs=["text", gr.Radio(choices=list(experiment_retriever_options.keys()), label="Select a retriever", value="Wikipedia")],
    outputs="text",
    title="Generate an experiment",
    description="I am here to generate and store science experiments for our users",
)

search_experiments_interface = gr.Interface(
    fn=search_experiments,
    inputs=["text", gr.Slider(minimum=2, maximum=6, step=1, value=2, label="Select a number")],
    outputs="text",
    title="Search Existing Experiments",
    description="If you would like an idea of the experiments in the vectorestore here is the place",
)

search_apparatus_interface = gr.Interface(
    fn=search_apparatus,
    inputs=["text", gr.Slider(minimum=2, maximum=6, step=1, value=2, label="Select a number")],
    outputs="text",
    title="Search Existing Apparatuses",
    description="If you would like an idea of the apparatuses in the vectorestore here is the place",
)

demo = gr.TabbedInterface([
    generate_apparatus_interface, 
    generate_experiment_interface,
    search_experiments_interface,
    search_apparatus_interface,
], ["Generate Apparatus", "Generate Experiment", "Search Existing Experiments","Search Existing Apparatuses"])

if __name__ == "__main__":
    demo.launch()