Spaces:
Running
Running
File size: 5,368 Bytes
f14de11 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 |
import gradio as gr
import iscc_core as ic
import iscc_sdk as idk
import pathlib
HERE = pathlib.Path(__file__).parent.absolute()
SAMPLE_FILEPATH = HERE / "samples/sample.txt"
sample_text = open(SAMPLE_FILEPATH, "rt", encoding="utf-8").read()
newline_symbols = {
"\u000a": "β", # Line Feed - Represented by the 'Return' symbol
"\u000b": "β¨", # Vertical Tab - Represented by the 'Up Down Arrow' symbol
"\u000c": "β", # Form Feed - Unicode Control Pictures representation
"\u000d": "β΅", # Carriage Return - 'Downwards Arrow with Corner Leftwards' symbol
"\u0085": "β€", # Next Line - 'Downwards Arrow with Double Stroke' symbol
"\u2028": "β²", # Line Separator - 'Downwards Arrow with Tip Leftwards' symbol
"\u2029": "ΒΆ", # Paragraph Separator - Represented by the 'Pilcrow' symbol
}
custom_css = """
#chunked-text span.label {
text-transform: none !important;
}
"""
def no_nl(text):
"""Replace non-printable newline characters with printable symbols"""
for char, symbol in newline_symbols.items():
text = text.replace(char, symbol)
return text
def chunk_text(text, chunk_size):
original_chunk_size = idk.sdk_opts.text_avg_chunk_size
idk.sdk_opts.text_avg_chunk_size = chunk_size
cleaned = ic.text_clean(text)
processed = idk.text_features(cleaned)
features = processed["features"]
sizes = processed["sizes"]
start = 0
chunks = []
for size in sizes:
end = start + size
chunks.append(no_nl(cleaned[start:end]))
start = end
result = [
(chunk, f"{size}:{feat}") for chunk, size, feat in zip(chunks, sizes, features)
]
idk.sdk_opts.text_avg_chunk_size = original_chunk_size
return result
with gr.Blocks(css=custom_css) as demo:
with gr.Row(variant="panel"):
gr.Markdown(
"""
## βοΈ ISCC Chunker
Demo of Content-Defined Variable-Length Chunking for Shift-Resistant Text and Data Segmentation
""",
)
with gr.Row(variant="panel"):
with gr.Column(variant="panel"):
in_text = gr.TextArea(
label="Text Chunker",
placeholder="Paste your text here",
lines=12,
max_lines=12,
)
in_chunksize = gr.Slider(
label="Chunk Size",
info="AVERAGE NUMBER OF CHARACTERS PER CHUNK",
minimum=64,
maximum=2048,
step=32,
value=64,
)
gr.Examples(label="Sample Text", examples=[sample_text], inputs=[in_text])
out_text = gr.HighlightedText(
label="Chunked Text Output",
interactive=False,
elem_id="chunked-text",
)
with gr.Row():
gr.ClearButton(components=[in_text, in_chunksize, out_text])
with gr.Row(variant="panel"):
gr.Markdown(
"""
## π Help & Instructions
This Demo showcases ISCC's shift-resistant chunking algorithm. Here's how to use it:
A) **Paste your text** into the "Text Chunker" field or select the sample below.
The **"Chunked Text Output"** will display the results, highlighting each chunk and its
number of characters and associated similarity hash.
B) Edit the text** in the "Text Chunker" field
Observe how most chunks stay the same (same length and same hash) even if you make edits
in the beginning of the text.
C) **Adjust the "Chunk Size"** slider to control the average number of characters per chunk.
Observe how the chunks get smaller/larger on average. Smaller sizes result in more,
more fine grained chunks, while larger sizes produce fewer, larger chunks on average.
D) Use the **Clear Button** to start over.
For more information about ISCC chunking, please visit: https://core.iscc.codes/algorithms/cdc/
""",
)
gr.Markdown(
"""
## What is Content-Defined Chunking?
This method segments text (or data) into chunks using a content-defined approach, which is
resilient to shifts in the text. It ensures that changes in the beginning of the text have
minimal impact on the chunk boundaries further in the text, making it ideal for version
control, data deduplication, and similar applications where detecting content changes
efficiently is crucial.
## How does ISCC use Content-Defined Chunking?
The [Data-Code](https://github.com/iscc/iscc-core/blob/main/iscc_core/code_data.py) is
generated by chunking the raw file bitstream with an average chunk size of 1024 bytes.
The chunks are hashed with `xxhash` and processed with a `minhash` algorithm.
It is also used by the [iscc-sdk](https://github.com/iscc/iscc-sdk) to generate granular
syntactic similarity hashes for textual content with an average chunk size of 1024
characters. When activated the granular chunk hashes are attached to the generated ISCC
Metadata.
"""
)
in_text.change(chunk_text, inputs=[in_text, in_chunksize], outputs=[out_text])
in_chunksize.change(chunk_text, inputs=[in_text, in_chunksize], outputs=[out_text])
if __name__ == "__main__":
demo.launch()
|