File size: 4,953 Bytes
e28221f
bc384a3
e28221f
bc384a3
e28221f
2da6968
 
3a09006
489b65b
3a09006
 
 
489b65b
3a09006
 
 
 
 
 
 
 
 
 
 
 
 
c769be6
3a09006
 
 
c769be6
e916990
 
 
c769be6
e916990
 
 
c769be6
3a09006
 
 
 
2da6968
 
 
 
 
 
 
 
bc384a3
2da6968
3a09006
 
 
 
 
 
 
 
 
 
 
 
 
 
c769be6
3a09006
 
 
 
 
 
 
2da6968
 
 
3a09006
 
 
d2b20f2
 
 
 
 
 
2da6968
3a09006
d2b20f2
 
 
 
 
 
 
 
 
 
 
3a09006
 
 
 
 
 
 
 
 
 
 
 
 
 
e28221f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3a09006
 
 
e28221f
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
import argparse
import os
import sys
import uvicorn

from fastapi import FastAPI, Depends
from fastapi.security import HTTPBearer, HTTPAuthorizationCredentials
from pydantic import BaseModel, Field
from sse_starlette.sse import EventSourceResponse, ServerSentEvent
from utils.logger import logger
from networks.message_streamer import MessageStreamer
from messagers.message_composer import MessageComposer
from mocks.stream_chat_mocker import stream_chat_mock


class ChatAPIApp:
    def __init__(self):
        self.app = FastAPI(
            docs_url="/",
            title="HuggingFace LLM API",
            swagger_ui_parameters={"defaultModelsExpandDepth": -1},
            version="1.0",
        )
        self.setup_routes()

    def get_available_models(self):
        # ANCHOR[id=available-models]: Available models
        self.available_models = [
            {
                "id": "mixtral-8x7b",
                "description": "[mistralai/Mixtral-8x7B-Instruct-v0.1]: https://huggingface.co/mistralai/Mixtral-8x7B-Instruct-v0.1",
            },
            {
                "id": "mistral-7b",
                "description": "[mistralai/Mistral-7B-Instruct-v0.2]: https://huggingface.co/mistralai/Mistral-7B-Instruct-v0.2",
            },
            {
                "id": "openchat-3.5",
                "description": "[openchat/openchat-3.5-1210]: https://huggingface.co/openchat/openchat-3.5-1210",
            },
        ]
        return self.available_models

    def extract_api_key(
        credentials: HTTPAuthorizationCredentials = Depends(
            HTTPBearer(auto_error=False)
        ),
    ):
        if credentials:
            return credentials.credentials
        else:
            return os.getenv("HF_TOKEN") or None

    class ChatCompletionsPostItem(BaseModel):
        model: str = Field(
            default="mixtral-8x7b",
            description="(str) `mixtral-8x7b`",
        )
        messages: list = Field(
            default=[{"role": "user", "content": "Hello, who are you?"}],
            description="(list) Messages",
        )
        temperature: float = Field(
            default=0.01,
            description="(float) Temperature",
        )
        max_tokens: int = Field(
            default=4096,
            description="(int) Max tokens",
        )
        stream: bool = Field(
            default=True,
            description="(bool) Stream",
        )

    def chat_completions(
        self, item: ChatCompletionsPostItem, api_key: str = Depends(extract_api_key)
    ):
        streamer = MessageStreamer(model=item.model)
        composer = MessageComposer(model=item.model)
        composer.merge(messages=item.messages)
        # streamer.chat = stream_chat_mock

        stream_response = streamer.chat_response(
            prompt=composer.merged_str,
            temperature=item.temperature,
            max_new_tokens=item.max_tokens,
            api_key=api_key,
        )
        if item.stream:
            event_source_response = EventSourceResponse(
                streamer.chat_return_generator(stream_response),
                media_type="text/event-stream",
                ping=2000,
                ping_message_factory=lambda: ServerSentEvent(**{"comment": ""}),
            )
            return event_source_response
        else:
            data_response = streamer.chat_return_dict(stream_response)
            return data_response

    def setup_routes(self):
        for prefix in ["", "/v1"]:
            self.app.get(
                prefix + "/models",
                summary="Get available models",
            )(self.get_available_models)

            self.app.post(
                prefix + "/chat/completions",
                summary="Chat completions in conversation session",
            )(self.chat_completions)


class ArgParser(argparse.ArgumentParser):
    def __init__(self, *args, **kwargs):
        super(ArgParser, self).__init__(*args, **kwargs)

        self.add_argument(
            "-s",
            "--server",
            type=str,
            default="0.0.0.0",
            help="Server IP for HF LLM Chat API",
        )
        self.add_argument(
            "-p",
            "--port",
            type=int,
            default=23333,
            help="Server Port for HF LLM Chat API",
        )

        self.add_argument(
            "-d",
            "--dev",
            default=False,
            action="store_true",
            help="Run in dev mode",
        )

        self.args = self.parse_args(sys.argv[1:])


app = ChatAPIApp().app

if __name__ == "__main__":
    args = ArgParser().args
    if args.dev:
        uvicorn.run("__main__:app", host=args.server, port=args.port, reload=True)
    else:
        uvicorn.run("__main__:app", host=args.server, port=args.port, reload=False)

    # python -m apis.chat_api      # [Docker] on product mode
    # python -m apis.chat_api -d   # [Dev]    on develop mode