Spaces:
Runtime error
Runtime error
import gradio as gr | |
import os | |
import pinecone | |
import time | |
from langchain.embeddings.huggingface import HuggingFaceEmbeddings | |
import torch | |
import sentence_transformers | |
from langchain.vectorstores import Pinecone | |
from langchain.llms.huggingface_text_gen_inference import HuggingFaceTextGenInference | |
from langchain.prompts import PromptTemplate | |
from langchain.chains import RetrievalQA | |
embed_model_id = 'sentence-transformers/all-MiniLM-L6-v2' | |
# device = f'cuda:{cuda.current_device()}' if cuda.is_available() else 'cpu' | |
embed_model = HuggingFaceEmbeddings( | |
model_name=embed_model_id, | |
# model_kwargs={'device': device}, | |
# encode_kwargs={'device': device, 'batch_size': 32} | |
) | |
# get API key from app.pinecone.io and environment from console | |
pinecone.init( | |
api_key=os.environ.get('PINECONE_API_KEY'), | |
environment=os.environ.get('PINECONE_ENVIRONMENT') | |
) | |
docs = [ | |
"this is one document", | |
"and another document" | |
] | |
embeddings = embed_model.embed_documents(docs) | |
index_name = 'llama-rag' | |
# if index_name not in pinecone.list_indexes(): | |
# pinecone.create_index( | |
# index_name, | |
# dimension=len(embeddings[0]), | |
# metric='cosine' | |
# ) | |
# # wait for index to finish initialization | |
# while not pinecone.describe_index(index_name).status['ready']: | |
# time.sleep(1) | |
index = pinecone.Index(index_name) | |
index.describe_index_stats() | |
text_field = 'text' # field in metadata that contains text content | |
vectorstore = Pinecone( | |
index, embed_model.embed_query, text_field | |
) | |
API_URL = "https://api-inference.huggingface.co/models/HuggingFaceH4/zephyr-7b-beta" | |
headers = {"Authorization": f"Bearer {os.environ.get('API_KEY')}"} | |
llm = HuggingFaceTextGenInference( | |
inference_server_url=API_URL, | |
max_new_tokens=1024, | |
top_k=10, | |
top_p=0.95, | |
typical_p=0.95, | |
temperature=0.01, | |
repetition_penalty=1.03, | |
) | |
rag_pipeline = RetrievalQA.from_chain_type( | |
llm=llm, chain_type='stuff', | |
retriever=vectorstore.as_retriever() | |
) | |
def question(question): | |
global chatbot | |
answer = rag_pipeline(question) | |
chatbot = answer | |
return answer['result'] | |
demo = gr.Interface(fn=question, inputs="text", outputs="text") | |
if __name__ == "__main__": | |
demo.launch() |