Spaces:
Runtime error
Runtime error
ishaan-mital
commited on
Commit
·
1e5cddc
1
Parent(s):
4d82c20
initial commit
Browse files- .gitignore +1 -0
- app.py +39 -15
- requirements.txt +6 -1
.gitignore
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
.env
|
app.py
CHANGED
@@ -1,27 +1,51 @@
|
|
1 |
from gradio_client import Client
|
2 |
import gradio as gr
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
3 |
|
4 |
-
|
5 |
-
retrieval = Client("https://ishaan-mital-ncert-helper-vector-db.hf.space/--replicas/149bg26k5/")
|
6 |
|
7 |
-
|
8 |
-
|
9 |
-
|
10 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
11 |
|
12 |
|
13 |
def main(question):
|
14 |
global chatbot
|
15 |
-
|
16 |
-
answer=chat_client.predict(
|
17 |
-
info +information+question, # str in 'Type an input and press Enter' Textbox component
|
18 |
-
chatbot,
|
19 |
-
fn_index=1
|
20 |
-
)
|
21 |
-
chatbot = answer[1]
|
22 |
-
return answer[1][0][1]
|
23 |
|
24 |
demo = gr.Interface(main, inputs = "text", outputs = "text")
|
25 |
|
26 |
if __name__ == "__main__":
|
27 |
-
demo.launch()
|
|
|
1 |
from gradio_client import Client
|
2 |
import gradio as gr
|
3 |
+
import requests
|
4 |
+
from langchain.chains import RetrievalQA
|
5 |
+
from langchain.vectorstores import Pinecone
|
6 |
+
import pinecone
|
7 |
+
from langchain.qa import RetrievalQA
|
8 |
+
from langchain.vectorstore import vectorstore
|
9 |
+
import os
|
10 |
+
from langchain.embeddings.huggingface import HuggingFaceEmbeddings
|
11 |
|
12 |
+
API_URL = "https://api-inference.huggingface.co/models/HuggingFaceH4/zephyr-7b-beta"
|
13 |
+
# retrieval = Client("https://ishaan-mital-ncert-helper-vector-db.hf.space/--replicas/149bg26k5/")
|
14 |
|
15 |
+
embed_model_id = 'sentence-transformers/all-MiniLM-L6-v2'
|
16 |
+
embed_model = HuggingFaceEmbeddings(
|
17 |
+
model_name=embed_model_id,
|
18 |
+
)
|
19 |
+
pinecone.init(
|
20 |
+
api_key=os.environ.get('PINECONE_API_KEY'),
|
21 |
+
environment=os.environ.get('PINECONE_ENVIRONMENT')
|
22 |
+
)
|
23 |
+
|
24 |
+
index_name = 'llama-rag'
|
25 |
+
index = pinecone.Index(index_name)
|
26 |
+
text_field = 'text' # field in metadata that contains text content
|
27 |
+
|
28 |
+
vectorstore = Pinecone(
|
29 |
+
index, embed_model.embed_query, text_field
|
30 |
+
)
|
31 |
+
|
32 |
+
def call_llm_api(input_text):
|
33 |
+
headers = {"Authorization": f"Bearer {os.environ.get('API_KEY')}"}
|
34 |
+
payload = {"imput": input_text}
|
35 |
+
response = requests.post(API_URL, headers=headers, json=payload)
|
36 |
+
return response.json() # Adjust as needed based on your API response format
|
37 |
+
|
38 |
+
rag_pipeline = RetrievalQA.from_chain_type(
|
39 |
+
llm=call_llm_api, chain_type='stuff',
|
40 |
+
retriever=vectorstore.as_retriever()
|
41 |
+
)
|
42 |
|
43 |
|
44 |
def main(question):
|
45 |
global chatbot
|
46 |
+
return rag_pipeline(question)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
47 |
|
48 |
demo = gr.Interface(main, inputs = "text", outputs = "text")
|
49 |
|
50 |
if __name__ == "__main__":
|
51 |
+
demo.launch(share=True)
|
requirements.txt
CHANGED
@@ -1,4 +1,9 @@
|
|
1 |
hugchat
|
2 |
gradio
|
3 |
gradio_client
|
4 |
-
gtts
|
|
|
|
|
|
|
|
|
|
|
|
1 |
hugchat
|
2 |
gradio
|
3 |
gradio_client
|
4 |
+
gtts
|
5 |
+
pydantic==1.10.9
|
6 |
+
langchain
|
7 |
+
pinecone-client==2.2.2
|
8 |
+
faiss-cpu
|
9 |
+
sentence_transformers
|