Spaces:
Runtime error
Runtime error
ishaan-mital
commited on
Commit
·
d99b731
1
Parent(s):
fbfaaa6
lets see
Browse files- app.py +73 -90
- requirements.txt +4 -4
app.py
CHANGED
@@ -1,96 +1,79 @@
|
|
1 |
-
from gradio_client import Client
|
2 |
import gradio as gr
|
3 |
-
import requests
|
4 |
-
# from langchain.chains import RetrievalQA
|
5 |
-
# import pinecone
|
6 |
-
# from langchain.vectorstores import Pinecone
|
7 |
import os
|
8 |
-
|
9 |
-
|
10 |
-
# from
|
11 |
-
|
12 |
-
#
|
13 |
-
|
14 |
-
|
15 |
-
|
16 |
-
|
17 |
-
|
18 |
-
|
19 |
-
|
20 |
-
#
|
21 |
-
|
22 |
-
|
23 |
-
|
24 |
-
|
25 |
-
#
|
26 |
-
|
27 |
-
|
28 |
-
#
|
29 |
-
|
30 |
-
|
31 |
-
|
32 |
-
|
33 |
-
|
34 |
-
|
35 |
-
|
36 |
-
|
37 |
-
|
38 |
-
|
39 |
-
|
40 |
-
|
41 |
-
|
42 |
-
#
|
43 |
-
#
|
44 |
-
#
|
45 |
-
#
|
46 |
-
#
|
47 |
-
#
|
48 |
-
#
|
49 |
-
#
|
50 |
-
#
|
51 |
-
|
52 |
-
|
53 |
-
|
54 |
-
|
55 |
-
|
56 |
-
# rag_pipeline = RetrievalQA.from_chain_type(
|
57 |
-
# llm=llm, chain_type='stuff',
|
58 |
-
# retriever=vectorstore.as_retriever()
|
59 |
-
# )
|
60 |
-
def query(payload):
|
61 |
-
response = requests.post(API_URL, headers=headers, json=payload)
|
62 |
-
return response.json()
|
63 |
-
|
64 |
-
def main(question):
|
65 |
-
print(question)
|
66 |
-
context = retrieval.predict(question)
|
67 |
-
# try:
|
68 |
-
print(context)
|
69 |
-
answer = llm.predict(
|
70 |
-
f'Question: {question} and context: {context}',
|
71 |
-
"NCERT Helper!!", # str in 'System prompt' Textbox component
|
72 |
-
2048, # float (numeric value between 1 and 2048) in 'Max new tokens' Slider component
|
73 |
-
0.1, # float (numeric value between 0.1 and 4.0) in 'Temperature' Slider component
|
74 |
-
0.05, # float (numeric value between 0.05 and 1.0) in 'Top-p (nucleus sampling)' Slider component
|
75 |
-
1, # float (numeric value between 1 and 1000) in 'Top-k' Slider component
|
76 |
-
1, # float (numeric value between 1.0 and 2.0) in 'Repetition penalty' Slider component
|
77 |
-
api_name="/chat"
|
78 |
-
)
|
79 |
-
# except:
|
80 |
-
# answer = llm.predict(
|
81 |
-
# f'Question: {question}',
|
82 |
-
# "NCERT Helper!!", # str in 'System prompt' Textbox component
|
83 |
-
# 2048, # float (numeric value between 1 and 2048) in 'Max new tokens' Slider component
|
84 |
-
# 0.1, # float (numeric value between 0.1 and 4.0) in 'Temperature' Slider component
|
85 |
-
# 0.05, # float (numeric value between 0.05 and 1.0) in 'Top-p (nucleus sampling)' Slider component
|
86 |
-
# 1, # float (numeric value between 1 and 1000) in 'Top-k' Slider component
|
87 |
-
# 1, # float (numeric value between 1.0 and 2.0) in 'Repetition penalty' Slider component
|
88 |
-
# api_name="/chat"
|
89 |
-
# )
|
90 |
-
# answer = query({"inputs": {"question": question, "context": context}})
|
91 |
-
return answer
|
92 |
|
93 |
-
demo = gr.Interface(main, inputs = "text", outputs = "text")
|
94 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
95 |
if __name__ == "__main__":
|
96 |
demo.launch()
|
|
|
|
|
1 |
import gradio as gr
|
|
|
|
|
|
|
|
|
2 |
import os
|
3 |
+
import pinecone
|
4 |
+
import time
|
5 |
+
# from torch import cuda
|
6 |
+
from langchain.embeddings.huggingface import HuggingFaceEmbeddings
|
7 |
+
# import PyPDF2
|
8 |
+
# import re
|
9 |
+
from langchain.vectorstores import Pinecone
|
10 |
+
from langchain import HuggingFaceHub, LLMChain
|
11 |
+
from langchain.prompts import PromptTemplate
|
12 |
+
from langchain.chains import RetrievalQA
|
13 |
+
|
14 |
+
embed_model_id = 'sentence-transformers/all-MiniLM-L6-v2'
|
15 |
+
# device = f'cuda:{cuda.current_device()}' if cuda.is_available() else 'cpu'
|
16 |
+
|
17 |
+
embed_model = HuggingFaceEmbeddings(
|
18 |
+
model_name=embed_model_id,
|
19 |
+
# model_kwargs={'device': device},
|
20 |
+
# encode_kwargs={'device': device, 'batch_size': 32}
|
21 |
+
)
|
22 |
+
|
23 |
+
# get API key from app.pinecone.io and environment from console
|
24 |
+
pinecone.init(
|
25 |
+
api_key=os.environ.get('PINECONE_API_KEY'),
|
26 |
+
environment=os.environ.get('PINECONE_ENVIRONMENT')
|
27 |
+
)
|
28 |
+
docs = [
|
29 |
+
"this is one document",
|
30 |
+
"and another document"
|
31 |
+
]
|
32 |
+
|
33 |
+
embeddings = embed_model.embed_documents(docs)
|
34 |
+
|
35 |
+
index_name = 'llama-rag'
|
36 |
+
|
37 |
+
# if index_name not in pinecone.list_indexes():
|
38 |
+
# pinecone.create_index(
|
39 |
+
# index_name,
|
40 |
+
# dimension=len(embeddings[0]),
|
41 |
+
# metric='cosine'
|
42 |
+
# )
|
43 |
+
# # wait for index to finish initialization
|
44 |
+
# while not pinecone.describe_index(index_name).status['ready']:
|
45 |
+
# time.sleep(1)
|
46 |
+
|
47 |
+
index = pinecone.Index(index_name)
|
48 |
+
index.describe_index_stats()
|
49 |
+
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
50 |
|
|
|
51 |
|
52 |
+
|
53 |
+
text_field = 'text' # field in metadata that contains text content
|
54 |
+
|
55 |
+
vectorstore = Pinecone(
|
56 |
+
index, embed_model.embed_query, text_field
|
57 |
+
)
|
58 |
+
|
59 |
+
|
60 |
+
hub = HuggingFaceHub(repo_id = "HuggingFaceH4/zephyr-7b-beta",huggingfacehub_api_token="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")
|
61 |
+
print(hub)
|
62 |
+
prompt = PromptTemplate(
|
63 |
+
input_variables=["question"],
|
64 |
+
template="Question: {question}\nAnswer:",
|
65 |
+
)
|
66 |
+
|
67 |
+
rag_pipeline = RetrievalQA.from_chain_type(
|
68 |
+
llm=hub, chain_type='stuff',
|
69 |
+
retriever=vectorstore.as_retriever()
|
70 |
+
)
|
71 |
+
|
72 |
+
def question(question):
|
73 |
+
answer = rag_pipeline(question)
|
74 |
+
return answer
|
75 |
+
|
76 |
+
demo = gr.Interface(fn=question, inputs="text", outputs="text")
|
77 |
+
|
78 |
if __name__ == "__main__":
|
79 |
demo.launch()
|
requirements.txt
CHANGED
@@ -3,9 +3,9 @@ gradio
|
|
3 |
gradio_client
|
4 |
gtts
|
5 |
# openai==0.28
|
6 |
-
|
7 |
-
|
8 |
-
|
9 |
# faiss-cpu
|
10 |
-
|
11 |
# transformers
|
|
|
3 |
gradio_client
|
4 |
gtts
|
5 |
# openai==0.28
|
6 |
+
pydantic==1.10.9
|
7 |
+
langchain
|
8 |
+
pinecone-client==2.2.2
|
9 |
# faiss-cpu
|
10 |
+
sentence_transformers
|
11 |
# transformers
|