Spaces:
Runtime error
Runtime error
from gradio_client import Client | |
import gradio as gr | |
import requests | |
from langchain.chains import RetrievalQA | |
import pinecone | |
from langchain.vectorstores import Pinecone | |
import os | |
from langchain.embeddings.huggingface import HuggingFaceEmbeddings | |
import time | |
API_URL = "https://api-inference.huggingface.co/models/HuggingFaceH4/zephyr-7b-beta" | |
headers = {"Authorization": f"Bearer {os.environ.get('API_KEY')}"} | |
# retrieval = Client("https://ishaan-mital-ncert-helper-vector-db.hf.space/--replicas/149bl5mjn/") | |
embed_model_id = 'sentence-transformers/all-MiniLM-L6-v2' | |
# device = f'cuda:{cuda.current_device()}' if cuda.is_available() else 'cpu' | |
embed_model = HuggingFaceEmbeddings( | |
model_name=embed_model_id, | |
# model_kwargs={'device': device}, | |
# encode_kwargs={'device': device, 'batch_size': 32} | |
) | |
pinecone.init( | |
api_key=os.environ.get('PINECONE_API_KEY'), | |
environment=os.environ.get('PINECONE_ENVIRONMENT') | |
) | |
index_name = 'llama-rag' | |
index = pinecone.Index(index_name) | |
text_field = 'text' # field in metadata that contains text content | |
docs = [ | |
"this is one document", | |
"and another document" | |
] | |
embeddings = embed_model.embed_documents(docs) | |
if index_name not in pinecone.list_indexes(): | |
pinecone.create_index( | |
index_name, | |
dimension=len(embeddings[0]), | |
metric='cosine' | |
) | |
# wait for index to finish initialization | |
while not pinecone.describe_index(index_name).status['ready']: | |
time.sleep(1) | |
vectorstore = Pinecone( | |
index, embed_model.embed_query, text_field | |
) | |
def call_llm_api(input_text,context): | |
payload = { | |
"inputs": f'question: {input_text}, context: {context}' | |
} | |
response = requests.post(API_URL, headers=headers, json=payload) | |
return response.json() # Adjust as needed based on your API response format | |
rag_pipeline = RetrievalQA.from_chain_type( | |
llm=call_llm_api, chain_type='stuff', | |
retriever=vectorstore.as_retriever() | |
) | |
def main(question): | |
return rag_pipeline(question) | |
# global chatbot | |
# context = retrieval.predict(question, api_name = "/predict") | |
# answer=call_llm_api(question,context) | |
# # chatbot = answer[1] | |
# return answer[0] | |
demo = gr.Interface(main, inputs = "text", outputs = "text") | |
if __name__ == "__main__": | |
demo.launch() |