Spaces:
Sleeping
Sleeping
import asyncio | |
import torch | |
from datetime import datetime | |
from services.model_visitor import ModelVisitor | |
from utils.logger import Logger | |
logger = Logger.get_logger(__name__) | |
class IbmTextGenerator(ModelVisitor): | |
async def visit(self, model_generator, input_text, max_length_per_chunk=50): | |
return await self._generate_text(model_generator, input_text, max_length_per_chunk) | |
async def _generate_text_chunk(self, model_generator, input_ids, max_length_per_chunk): | |
with torch.no_grad(): | |
outputs = await asyncio.to_thread(model_generator.model.generate, input_ids, max_new_tokens=max_length_per_chunk) | |
continuation = model_generator.tokenizer.decode( | |
outputs[0], skip_special_tokens=False) | |
logger.info('Chunk generated: {}'.format(continuation)) | |
return continuation | |
async def _generate_text(self, model_generator, input_text, max_length_per_chunk): | |
""" | |
Generates the text based on input provided | |
Args: | |
input_text (str): The input string containing text blocks. | |
max_length_per_chunk: Max length per chunk (Default: 50 / Optional) | |
""" | |
try: | |
start_time = datetime.now() | |
logger.info('Started at: {}'.format( | |
start_time.strftime(model_generator._format_data_time))) | |
input_ids = model_generator.tokenizer.encode( | |
input_text, return_tensors='pt').to(model_generator.device) | |
output_text = input_text | |
while True: | |
continuation = await self._generate_text_chunk( | |
model_generator, input_ids, max_length_per_chunk) | |
new_text = continuation[len(model_generator.tokenizer.decode( | |
input_ids[0], skip_special_tokens=False)):] | |
output_text += new_text | |
input_ids = model_generator.tokenizer.encode( | |
output_text, return_tensors='pt').to(model_generator.device) | |
if "<|endoftext|>" in new_text or new_text.count('```') > 1: | |
break | |
end_time = datetime.now() | |
logger.info('Output generated at: {}'.format( | |
end_time.strftime(model_generator._format_data_time))) | |
logger.info('Time taken: {}'.format(end_time - start_time)) | |
return output_text | |
except asyncio.CancelledError: | |
logger.error( | |
'Cancelling model generation due to disconnection in network.') | |
return "" | |