isitcoding commited on
Commit
82ea2ae
·
verified ·
1 Parent(s): 3d6ba85

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +37 -56
app.py CHANGED
@@ -1,64 +1,45 @@
1
  import gradio as gr
2
  from huggingface_hub import InferenceClient
 
3
 
4
  """
5
- For more information on `huggingface_hub` Inference API support, please check the docs: https://huggingface.co/docs/huggingface_hub/v0.22.2/en/guides/inference
 
6
  """
7
- client = InferenceClient("HuggingFaceH4/zephyr-7b-beta")
8
 
9
-
10
- def respond(
11
- message,
12
- history: list[tuple[str, str]],
13
- system_message,
14
- max_tokens,
15
- temperature,
16
- top_p,
17
- ):
18
- messages = [{"role": "system", "content": system_message}]
19
-
20
- for val in history:
21
- if val[0]:
22
- messages.append({"role": "user", "content": val[0]})
23
- if val[1]:
24
- messages.append({"role": "assistant", "content": val[1]})
25
-
26
- messages.append({"role": "user", "content": message})
27
-
28
- response = ""
29
-
30
- for message in client.chat_completion(
31
- messages,
32
- max_tokens=max_tokens,
33
- stream=True,
34
- temperature=temperature,
35
- top_p=top_p,
36
- ):
37
- token = message.choices[0].delta.content
38
-
39
- response += token
40
- yield response
41
-
42
-
43
- """
44
- For information on how to customize the ChatInterface, peruse the gradio docs: https://www.gradio.app/docs/chatinterface
45
- """
46
- demo = gr.ChatInterface(
47
- respond,
48
- additional_inputs=[
49
- gr.Textbox(value="You are a friendly Chatbot.", label="System message"),
50
- gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max new tokens"),
51
- gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"),
52
- gr.Slider(
53
- minimum=0.1,
54
- maximum=1.0,
55
- value=0.95,
56
- step=0.05,
57
- label="Top-p (nucleus sampling)",
58
- ),
59
- ],
60
  )
61
 
62
-
63
- if __name__ == "__main__":
64
- demo.launch()
 
1
  import gradio as gr
2
  from huggingface_hub import InferenceClient
3
+ from transformers import pipeline
4
 
5
  """
6
+ For more information on `huggingface_hub` Inference API support, please check the docs:
7
+ https://huggingface.co/docs/huggingface_hub/v0.22.2/en/guides/inference
8
  """
 
9
 
10
+ # Initialize the inference client with the model you're using
11
+ client = InferenceClient(model="isitcoding/gpt2_120_finetuned")
12
+
13
+ # Initialize a text generation pipeline using Hugging Face's transformer
14
+ generator = pipeline('text-generation', model='HuggingFaceH4/zephyr-7b-beta')
15
+
16
+ def respond(message, history: list[tuple[str, str]]):
17
+ """
18
+ Respond function to generate text based on the user's message and conversation history.
19
+ The `history` parameter keeps track of the conversation context.
20
+ """
21
+ # Add the new message to the conversation history
22
+ history.append(("User", message))
23
+
24
+ # Use the generator model to get a response from the model
25
+ input_text = " ".join([h[1] for h in history]) # Combine the conversation history into one string
26
+ output = generator(input_text, max_length=500, num_return_sequences=1)
27
+
28
+ # Extract the response from the output
29
+ response = output[0]['generated_text'].strip()
30
+
31
+ # Add the model's response to the history
32
+ history.append(("Bot", response))
33
+
34
+ return response, history
35
+
36
+ # Create a Gradio interface for interaction
37
+ iface = gr.Interface(
38
+ fn=respond,
39
+ inputs=[gr.Textbox(label="Enter your message", placeholder="Type here..."), gr.State()],
40
+ outputs=[gr.Textbox(label="Response"), gr.State()],
41
+ live=True
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
42
  )
43
 
44
+ # Launch the Gradio interface
45
+ iface.launch()