Spaces:
Runtime error
Runtime error
Update app.py
Browse files
app.py
CHANGED
@@ -1,64 +1,45 @@
|
|
1 |
import gradio as gr
|
2 |
from huggingface_hub import InferenceClient
|
|
|
3 |
|
4 |
"""
|
5 |
-
For more information on `huggingface_hub` Inference API support, please check the docs:
|
|
|
6 |
"""
|
7 |
-
client = InferenceClient("HuggingFaceH4/zephyr-7b-beta")
|
8 |
|
9 |
-
|
10 |
-
|
11 |
-
|
12 |
-
|
13 |
-
|
14 |
-
|
15 |
-
|
16 |
-
|
17 |
-
|
18 |
-
|
19 |
-
|
20 |
-
|
21 |
-
|
22 |
-
|
23 |
-
|
24 |
-
|
25 |
-
|
26 |
-
|
27 |
-
|
28 |
-
response =
|
29 |
-
|
30 |
-
|
31 |
-
|
32 |
-
|
33 |
-
|
34 |
-
|
35 |
-
|
36 |
-
|
37 |
-
|
38 |
-
|
39 |
-
|
40 |
-
|
41 |
-
|
42 |
-
|
43 |
-
"""
|
44 |
-
For information on how to customize the ChatInterface, peruse the gradio docs: https://www.gradio.app/docs/chatinterface
|
45 |
-
"""
|
46 |
-
demo = gr.ChatInterface(
|
47 |
-
respond,
|
48 |
-
additional_inputs=[
|
49 |
-
gr.Textbox(value="You are a friendly Chatbot.", label="System message"),
|
50 |
-
gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max new tokens"),
|
51 |
-
gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"),
|
52 |
-
gr.Slider(
|
53 |
-
minimum=0.1,
|
54 |
-
maximum=1.0,
|
55 |
-
value=0.95,
|
56 |
-
step=0.05,
|
57 |
-
label="Top-p (nucleus sampling)",
|
58 |
-
),
|
59 |
-
],
|
60 |
)
|
61 |
|
62 |
-
|
63 |
-
|
64 |
-
demo.launch()
|
|
|
1 |
import gradio as gr
|
2 |
from huggingface_hub import InferenceClient
|
3 |
+
from transformers import pipeline
|
4 |
|
5 |
"""
|
6 |
+
For more information on `huggingface_hub` Inference API support, please check the docs:
|
7 |
+
https://huggingface.co/docs/huggingface_hub/v0.22.2/en/guides/inference
|
8 |
"""
|
|
|
9 |
|
10 |
+
# Initialize the inference client with the model you're using
|
11 |
+
client = InferenceClient(model="isitcoding/gpt2_120_finetuned")
|
12 |
+
|
13 |
+
# Initialize a text generation pipeline using Hugging Face's transformer
|
14 |
+
generator = pipeline('text-generation', model='HuggingFaceH4/zephyr-7b-beta')
|
15 |
+
|
16 |
+
def respond(message, history: list[tuple[str, str]]):
|
17 |
+
"""
|
18 |
+
Respond function to generate text based on the user's message and conversation history.
|
19 |
+
The `history` parameter keeps track of the conversation context.
|
20 |
+
"""
|
21 |
+
# Add the new message to the conversation history
|
22 |
+
history.append(("User", message))
|
23 |
+
|
24 |
+
# Use the generator model to get a response from the model
|
25 |
+
input_text = " ".join([h[1] for h in history]) # Combine the conversation history into one string
|
26 |
+
output = generator(input_text, max_length=500, num_return_sequences=1)
|
27 |
+
|
28 |
+
# Extract the response from the output
|
29 |
+
response = output[0]['generated_text'].strip()
|
30 |
+
|
31 |
+
# Add the model's response to the history
|
32 |
+
history.append(("Bot", response))
|
33 |
+
|
34 |
+
return response, history
|
35 |
+
|
36 |
+
# Create a Gradio interface for interaction
|
37 |
+
iface = gr.Interface(
|
38 |
+
fn=respond,
|
39 |
+
inputs=[gr.Textbox(label="Enter your message", placeholder="Type here..."), gr.State()],
|
40 |
+
outputs=[gr.Textbox(label="Response"), gr.State()],
|
41 |
+
live=True
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
42 |
)
|
43 |
|
44 |
+
# Launch the Gradio interface
|
45 |
+
iface.launch()
|
|