Spaces:
Runtime error
Runtime error
Update app.py
Browse files
app.py
CHANGED
@@ -1,79 +1,34 @@
|
|
1 |
-
from transformers import pipeline
|
2 |
-
generator = pipeline('text-generation', model = 'isitcoding/gpt2_120_finetuned')
|
3 |
-
generator("", max_length = 1028, num_return_sequences=3)
|
4 |
-
|
5 |
-
'''import os
|
6 |
import gradio as gr
|
|
|
|
|
7 |
from transformers import pipeline
|
8 |
-
from huggingface_hub import InferenceClient
|
9 |
-
|
10 |
-
hf_token = os.getenv("gpt2_token")
|
11 |
-
# Initialize the text generation pipeline
|
12 |
-
client =
|
13 |
-
generator = pipeline("text-generation", )
|
14 |
-
|
15 |
-
# Define the response function with additional options for customization
|
16 |
-
def text_generation(
|
17 |
-
prompt: str,
|
18 |
-
details: bool = False,
|
19 |
-
stream: bool = False,
|
20 |
-
model: str = None,
|
21 |
-
best_of: int = None,
|
22 |
-
decoder_input_details: bool = None,
|
23 |
-
do_sample: bool = False,
|
24 |
-
frequency_penalty: float = None,
|
25 |
-
grammar: None = None,
|
26 |
-
max_new_tokens: int = None,
|
27 |
-
repetition_penalty: float = None
|
28 |
-
):
|
29 |
-
# Setup the configuration for the model generation
|
30 |
-
gen_params = {
|
31 |
-
"max_length": 518, # Default, you can tweak it or set from parameters
|
32 |
-
"num_return_sequences": 1,
|
33 |
-
"do_sample": do_sample,
|
34 |
-
"temperature": 0.7, # Controls randomness
|
35 |
-
"top_k": 50, # You can adjust for more control over sampling
|
36 |
-
"top_p": 0.9, # Same as above, for sampling
|
37 |
-
}
|
38 |
-
|
39 |
-
if max_new_tokens:
|
40 |
-
gen_params["max_length"] = max_new_tokens + len(prompt.split())
|
41 |
-
|
42 |
-
if frequency_penalty:
|
43 |
-
gen_params["frequency_penalty"] = frequency_penalty
|
44 |
-
|
45 |
-
if repetition_penalty:
|
46 |
-
gen_params["repetition_penalty"] = repetition_penalty
|
47 |
-
|
48 |
-
# Generate the text based on the input prompt and parameters
|
49 |
-
generated_text = generator(prompt, **gen_params)[0]["generated_text"]
|
50 |
-
|
51 |
-
if details:
|
52 |
-
# Return additional details for debugging if needed
|
53 |
-
return {
|
54 |
-
"generated_text": generated_text,
|
55 |
-
"params_used": gen_params
|
56 |
-
}
|
57 |
-
else:
|
58 |
-
return generated_text
|
59 |
-
|
60 |
-
# Create Gradio interface
|
61 |
-
iface = gr.Interface(
|
62 |
-
fn=text_generation, # The function we defined
|
63 |
-
inputs=[
|
64 |
-
gr.Textbox(label="Input Prompt"), # User input prompt
|
65 |
-
gr.Checkbox(label="Show Details", default=False), # Option for additional details
|
66 |
-
gr.Checkbox(label="Stream Mode", default=False), # Streaming checkbox (not used in this example)
|
67 |
-
gr.Textbox(label="Model (optional)", default=None), # Optional model name
|
68 |
-
gr.Slider(minimum=1, maximum=5, label="Best of (Optional)", default=None),
|
69 |
-
gr.Slider(minimum=0.0, maximum=2.0, label="Frequency Penalty (Optional)", default=None),
|
70 |
-
gr.Slider(minimum=0.0, maximum=2.0, label="Repetition Penalty (Optional)", default=None),
|
71 |
-
],
|
72 |
-
outputs="text" # Output is plain text
|
73 |
-
)
|
74 |
-
|
75 |
-
# Launch the interface
|
76 |
-
iface.launch()
|
77 |
-
'''
|
78 |
|
79 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
import gradio as gr
|
2 |
+
import random
|
3 |
+
import time
|
4 |
from transformers import pipeline
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
5 |
|
6 |
|
7 |
+
# Load the text generation pipeline with your fine-tuned model
|
8 |
+
generator = pipeline('text-generation', model='isitcoding/gpt2_120_finetuned')
|
9 |
+
|
10 |
+
# Function to generate responses using the text generation model
|
11 |
+
def respond(message, chat_history):
|
12 |
+
# Generate a response from the model
|
13 |
+
response = generator(message, max_length=1028, num_return_sequences=3)[0]['generated_text']
|
14 |
+
# Append the user message and model response to chat history
|
15 |
+
chat_history.append(("User", message))
|
16 |
+
chat_history.append(("Bot", response))
|
17 |
+
return chat_history
|
18 |
+
|
19 |
+
# Create a Gradio interface using Blocks
|
20 |
+
with gr.Blocks() as demo:
|
21 |
+
# Add a Chatbot component
|
22 |
+
chatbot = gr.Chatbot()
|
23 |
+
# Add a textbox for user input
|
24 |
+
msg = gr.Textbox(label="Enter your message")
|
25 |
+
# Add a button to clear the chat
|
26 |
+
clear = gr.Button("Clear")
|
27 |
+
|
28 |
+
# Define what happens when the user submits a message
|
29 |
+
msg.submit(respond, [msg, chatbot], chatbot)
|
30 |
+
# Define what happens when the clear button is pressed
|
31 |
+
clear.click(lambda: [], None, chatbot)
|
32 |
+
|
33 |
+
# Launch the Gradio interface
|
34 |
+
demo.launch()
|