isitcoding commited on
Commit
ce16a38
·
verified ·
1 Parent(s): 750be0e

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +54 -31
app.py CHANGED
@@ -1,45 +1,68 @@
1
  import gradio as gr
2
- from huggingface_hub import InferenceClient
3
  from transformers import pipeline
4
 
5
- """
6
- For more information on `huggingface_hub` Inference API support, please check the docs:
7
- https://huggingface.co/docs/huggingface_hub/v0.22.2/en/guides/inference
8
- """
9
 
10
- # Initialize the inference client with the model you're using
11
- client = InferenceClient(model="isitcoding/gpt2_120_finetuned")
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
12
 
13
- # Initialize a text generation pipeline using Hugging Face's transformer
14
- generator = pipeline('text-generation', model=client)
15
 
16
- def respond(message, history: list[tuple[str, str]]):
17
- """
18
- Respond function to generate text based on the user's message and conversation history.
19
- The `history` parameter keeps track of the conversation context.
20
- """
21
- # Add the new message to the conversation history
22
- history.append(("User", message))
23
-
24
- # Use the generator model to get a response from the model
25
- input_text = " ".join([h[1] for h in history]) # Combine the conversation history into one string
26
- output = generator(input_text, max_length=500, num_return_sequences=1)
27
 
28
- # Extract the response from the output
29
- response = output[0]['generated_text'].strip()
30
 
31
- # Add the model's response to the history
32
- history.append(("Bot", response))
33
 
34
- return response, history
 
 
 
 
 
 
 
35
 
36
- # Create a Gradio interface for interaction
37
  iface = gr.Interface(
38
- fn=respond,
39
- inputs=[gr.Textbox(label="Enter your message", placeholder="Type here..."), gr.State()],
40
- outputs=[gr.Textbox(label="Response"), gr.State()],
41
- live=True
 
 
 
 
 
 
 
42
  )
43
 
44
- # Launch the Gradio interface
45
  iface.launch()
 
1
  import gradio as gr
 
2
  from transformers import pipeline
3
 
4
+ # Initialize the text generation pipeline
5
+ generator = pipeline("text-generation", model="gpt2", tokenizer="gpt2")
 
 
6
 
7
+ # Define the response function with additional options for customization
8
+ def text_generation(
9
+ prompt: str,
10
+ details: bool = False,
11
+ stream: bool = False,
12
+ model: str = None,
13
+ best_of: int = None,
14
+ decoder_input_details: bool = None,
15
+ do_sample: bool = False,
16
+ frequency_penalty: float = None,
17
+ grammar: None = None,
18
+ max_new_tokens: int = None,
19
+ repetition_penalty: float = None
20
+ ):
21
+ # Setup the configuration for the model generation
22
+ gen_params = {
23
+ "max_length": 50, # Default, you can tweak it or set from parameters
24
+ "num_return_sequences": 1,
25
+ "do_sample": do_sample,
26
+ "temperature": 0.7, # Controls randomness
27
+ "top_k": 50, # You can adjust for more control over sampling
28
+ "top_p": 0.9, # Same as above, for sampling
29
+ }
30
 
31
+ if max_new_tokens:
32
+ gen_params["max_length"] = max_new_tokens + len(prompt.split())
33
 
34
+ if frequency_penalty:
35
+ gen_params["frequency_penalty"] = frequency_penalty
 
 
 
 
 
 
 
 
 
36
 
37
+ if repetition_penalty:
38
+ gen_params["repetition_penalty"] = repetition_penalty
39
 
40
+ # Generate the text based on the input prompt and parameters
41
+ generated_text = generator(prompt, **gen_params)[0]["generated_text"]
42
 
43
+ if details:
44
+ # Return additional details for debugging if needed
45
+ return {
46
+ "generated_text": generated_text,
47
+ "params_used": gen_params
48
+ }
49
+ else:
50
+ return generated_text
51
 
52
+ # Create Gradio interface
53
  iface = gr.Interface(
54
+ fn=text_generation, # The function we defined
55
+ inputs=[
56
+ gr.Textbox(label="Input Prompt"), # User input prompt
57
+ gr.Checkbox(label="Show Details", default=False), # Option for additional details
58
+ gr.Checkbox(label="Stream Mode", default=False), # Streaming checkbox (not used in this example)
59
+ gr.Textbox(label="Model (optional)", default=None), # Optional model name
60
+ gr.Slider(minimum=1, maximum=5, label="Best of (Optional)", default=None),
61
+ gr.Slider(minimum=0.0, maximum=2.0, label="Frequency Penalty (Optional)", default=None),
62
+ gr.Slider(minimum=0.0, maximum=2.0, label="Repetition Penalty (Optional)", default=None),
63
+ ],
64
+ outputs="text" # Output is plain text
65
  )
66
 
67
+ # Launch the interface
68
  iface.launch()