import os import gradio as gr from transformers import pipeline hf_token = os.getenv("hf_token") # Initialize the text generation pipeline generator = pipeline("text-generation", model="isitcoding/gpt2_120_finetuned", use_auth_token=hf_token) # Define the response function with additional options for customization def text_generation( prompt: str, details: bool = False, stream: bool = False, model: str = None, best_of: int = None, decoder_input_details: bool = None, do_sample: bool = False, frequency_penalty: float = None, grammar: None = None, max_new_tokens: int = None, repetition_penalty: float = None ): # Setup the configuration for the model generation gen_params = { "max_length": 518, # Default, you can tweak it or set from parameters "num_return_sequences": 1, "do_sample": do_sample, "temperature": 0.7, # Controls randomness "top_k": 50, # You can adjust for more control over sampling "top_p": 0.9, # Same as above, for sampling } if max_new_tokens: gen_params["max_length"] = max_new_tokens + len(prompt.split()) if frequency_penalty: gen_params["frequency_penalty"] = frequency_penalty if repetition_penalty: gen_params["repetition_penalty"] = repetition_penalty # Generate the text based on the input prompt and parameters generated_text = generator(prompt, **gen_params)[0]["generated_text"] if details: # Return additional details for debugging if needed return { "generated_text": generated_text, "params_used": gen_params } else: return generated_text # Create Gradio interface iface = gr.Interface( fn=text_generation, # The function we defined inputs=[ gr.Textbox(label="Input Prompt"), # User input prompt gr.Checkbox(label="Show Details", default=False), # Option for additional details gr.Checkbox(label="Stream Mode", default=False), # Streaming checkbox (not used in this example) gr.Textbox(label="Model (optional)", default=None), # Optional model name gr.Slider(minimum=1, maximum=5, label="Best of (Optional)", default=None), gr.Slider(minimum=0.0, maximum=2.0, label="Frequency Penalty (Optional)", default=None), gr.Slider(minimum=0.0, maximum=2.0, label="Repetition Penalty (Optional)", default=None), ], outputs="text" # Output is plain text ) # Launch the interface iface.launch()