File size: 5,174 Bytes
0870534 16bbf6a ea40b51 0870534 9c58f57 0870534 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 |
import re
import torch
import torch.nn as nn
import torchvision.transforms as transforms
from argparse import ArgumentParser
import pytorch_lightning as pl
from .lsegmentation_module import LSegmentationModule
from .models.lseg_net import LSegNet
from encoding.models.sseg.base import up_kwargs
import os
import clip
import numpy as np
from scipy import signal
import glob
from PIL import Image
import matplotlib.pyplot as plt
import pandas as pd
class LSegModule(LSegmentationModule):
def __init__(self, data_path, dataset, batch_size, base_lr, max_epochs, **kwargs):
super(LSegModule, self).__init__(
data_path, dataset, batch_size, base_lr, max_epochs, **kwargs
)
if dataset == "citys":
self.base_size = 2048
self.crop_size = 768
else:
self.base_size = 520
self.crop_size = 480
use_pretrained = True
norm_mean= [0.5, 0.5, 0.5]
norm_std = [0.5, 0.5, 0.5]
print('** Use norm {}, {} as the mean and std **'.format(norm_mean, norm_std))
train_transform = [
transforms.ToTensor(),
transforms.Normalize(norm_mean, norm_std),
]
val_transform = [
transforms.ToTensor(),
transforms.Normalize(norm_mean, norm_std),
]
self.train_transform = transforms.Compose(train_transform)
self.val_transform = transforms.Compose(val_transform)
# self.trainset = self.get_trainset(
# dataset,
# augment=kwargs["augment"],
# base_size=self.base_size,
# crop_size=self.crop_size,
# )
self.num_classes = 255
self.train_accuracy = pl.metrics.Accuracy()
#self.valset = self.get_valset(
# dataset,
# augment=kwargs["augment"],
# base_size=self.base_size,
# crop_size=self.crop_size,
#)
use_batchnorm = (
(not kwargs["no_batchnorm"]) if "no_batchnorm" in kwargs else True
)
# print(kwargs)
labels = self.get_labels('ade20k')
self.net = LSegNet(
labels=labels,
backbone=kwargs["backbone"],
features=kwargs["num_features"],
crop_size=self.crop_size,
arch_option=kwargs["arch_option"],
block_depth=kwargs["block_depth"],
activation=kwargs["activation"],
)
self.net.pretrained.model.patch_embed.img_size = (
self.crop_size,
self.crop_size,
)
self._up_kwargs = up_kwargs
self.mean = norm_mean
self.std = norm_std
self.criterion = self.get_criterion(**kwargs)
def get_labels(self, dataset):
labels = []
path = 'label_files/{}_objectInfo150.txt'.format(dataset)
assert os.path.exists(path), '*** Error : {} not exist !!!'.format(path)
f = open(path, 'r')
lines = f.readlines()
for line in lines:
label = line.strip().split(',')[-1].split(';')[0]
labels.append(label)
f.close()
if dataset in ['ade20k']:
labels = labels[1:]
return labels
@staticmethod
def add_model_specific_args(parent_parser):
parser = LSegmentationModule.add_model_specific_args(parent_parser)
parser = ArgumentParser(parents=[parser])
parser.add_argument(
"--backbone",
type=str,
default="clip_vitl16_384",
help="backbone network",
)
parser.add_argument(
"--num_features",
type=int,
default=256,
help="number of featurs that go from encoder to decoder",
)
parser.add_argument("--dropout", type=float, default=0.1, help="dropout rate")
parser.add_argument(
"--finetune_weights", type=str, help="load weights to finetune from"
)
parser.add_argument(
"--no-scaleinv",
default=True,
action="store_false",
help="turn off scaleinv layers",
)
parser.add_argument(
"--no-batchnorm",
default=False,
action="store_true",
help="turn off batchnorm",
)
parser.add_argument(
"--widehead", default=False, action="store_true", help="wider output head"
)
parser.add_argument(
"--widehead_hr",
default=False,
action="store_true",
help="wider output head",
)
parser.add_argument(
"--arch_option",
type=int,
default=0,
help="which kind of architecture to be used",
)
parser.add_argument(
"--block_depth",
type=int,
default=0,
help="how many blocks should be used",
)
parser.add_argument(
"--activation",
choices=['lrelu', 'tanh'],
default="lrelu",
help="use which activation to activate the block",
)
return parser
|