Kaung Myat Htet commited on
Commit
7979fcd
·
1 Parent(s): bb4914c

initialize project

Browse files
Files changed (2) hide show
  1. app.py +76 -0
  2. requirements.txt +5 -0
app.py ADDED
@@ -0,0 +1,76 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import os
2
+ import sys
3
+ import time
4
+
5
+ import boto3
6
+
7
+ from langchain_aws import BedrockLLM
8
+ from langchain.embeddings import BedrockEmbeddings
9
+ from langchain.vectorstores import FAISS
10
+ from langchain_core.prompts import ChatPromptTemplate
11
+ from langchain_core.output_parsers import StrOutputParser
12
+ from langchain_core.runnables import RunnablePassthrough
13
+ import gradio as gr
14
+
15
+ module_path = ".."
16
+ sys.path.append(os.path.abspath(module_path))
17
+ bedrock_client = boto3.client('bedrock-runtime',region_name=os.environ.get("AWS_DEFAULT_REGION", "us-west-2"))
18
+
19
+ modelId = 'meta.llama3-1-70b-instruct-v1:0'
20
+
21
+ llm = BedrockLLM(
22
+ model_id=modelId,
23
+ client=bedrock_client
24
+ )
25
+
26
+ br_embeddings = BedrockEmbeddings(model_id="cohere.embed-multilingual-v3", client=bedrock_client)
27
+
28
+ db = FAISS.load_local('faiss_index', embeddings=br_embeddings, allow_dangerous_deserialization=True)
29
+ retriever = db.as_retriever(k=5)
30
+
31
+
32
+
33
+ prompt = ChatPromptTemplate.from_messages([
34
+ ('system',
35
+ "Answer the questions witht the provided context. Do not include based on the context or based on the documents in your answer."
36
+ "Please say you do not know if you do not know or cannot find the information needed."
37
+ "\n Question: {question} \nContext: {context}"),
38
+ ('user', "{question}")
39
+ ])
40
+
41
+
42
+ chat_history = []
43
+
44
+ def format_docs(docs):
45
+ return "\n\n".join(doc.page_content for doc in docs)
46
+
47
+ rag_chain = (
48
+ {"context": retriever | format_docs, "question": RunnablePassthrough()}
49
+ | prompt
50
+ | llm
51
+ | StrOutputParser()
52
+ )
53
+
54
+ response = rag_chain.invoke("Who are the board of directors in KCE company?")
55
+
56
+
57
+ def chat_gen(message, history):
58
+ response = rag_chain.invoke(message)
59
+ partial_message = ""
60
+ for token in response:
61
+ partial_message = partial_message + token
62
+ time.sleep(0.05)
63
+ yield partial_message
64
+
65
+
66
+ initial_msg = "Hello! I am KCE assistant. You can ask me anything about KCE. I am happy to assist you."
67
+ chatbot = gr.Chatbot(value = [[None, initial_msg]])
68
+ demo = gr.ChatInterface(chat_gen, chatbot=chatbot).queue()
69
+
70
+ try:
71
+ demo.launch(debug=True, share=False, show_api=False)
72
+ demo.close()
73
+ except Exception as e:
74
+ demo.close()
75
+ print(e)
76
+ raise e
requirements.txt ADDED
@@ -0,0 +1,5 @@
 
 
 
 
 
 
1
+ langchain
2
+ langchain-aws
3
+ langchain_community
4
+ faiss-cpu
5
+ boto3