teddyllm commited on
Commit
3535e4b
·
verified ·
1 Parent(s): 4e3e2f0

Create app.py

Browse files
Files changed (1) hide show
  1. app.py +88 -0
app.py ADDED
@@ -0,0 +1,88 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import os
2
+ import gradio as gr
3
+ from langchain_community.vectorstores import FAISS
4
+ from langchain_nvidia_ai_endpoints import NVIDIAEmbeddings
5
+
6
+ from langchain_core.runnables.passthrough import RunnableAssign, RunnablePassthrough
7
+ from langchain.memory import ConversationBufferMemory
8
+ from langchain_core.messages import get_buffer_string
9
+ from langchain_nvidia_ai_endpoints import ChatNVIDIA, NVIDIAEmbeddings
10
+
11
+ from langchain_core.prompts import ChatPromptTemplate
12
+ from langchain_core.output_parsers import StrOutputParser
13
+
14
+
15
+ embedder = NVIDIAEmbeddings(model="nvolveqa_40k", model_type=None)
16
+ db = FAISS.load_local("faiss_index", embedder, allow_dangerous_deserialization=True)
17
+
18
+ # docs = new_db.similarity_search(query)
19
+
20
+ nvidia_api_key = os.environ.get("NVIDIA_API_KEY", "")
21
+
22
+
23
+ from operator import itemgetter
24
+
25
+
26
+ # available models names
27
+ # mixtral_8x7b
28
+ # llama2_13b
29
+ llm = ChatNVIDIA(model="mixtral_8x7b") | StrOutputParser()
30
+ initial_msg = (
31
+ "Hello! I am a chatbot to help with any questions about Data First Company."
32
+ f"\nHow can I help you?"
33
+ )
34
+
35
+ context_prompt = ChatPromptTemplate.from_messages([
36
+ ('system',
37
+ "You are a chatbot, and you are helping customer with their inquries about Data First Company."
38
+ "Answer the question using only the context provided. Do not include based on the context or based on the documents provided in your answer."
39
+ "Please help them with their question about the company. Remember that your job is to represent Data First company that create data solutions."
40
+ "Do not hallucinate any details, and make sure the knowledge base is not redundant."
41
+ "Please say you do not know if you do not know or you cannot find the information needed."
42
+ "\n\nQuestion: {question}\n\nContext: {context}"),
43
+ ('user', "{question}"
44
+ )])
45
+
46
+ chain = (
47
+ {
48
+ 'context': db.as_retriever(search_type="similarity"),
49
+ 'question': (lambda x:x)
50
+ }
51
+ | context_prompt
52
+ # | RPrint()
53
+ | llm
54
+ | StrOutputParser()
55
+ )
56
+
57
+ conv_chain = (
58
+ context_prompt
59
+ # | RPrint()
60
+ | llm
61
+ | StrOutputParser()
62
+ )
63
+
64
+ def chat_gen(message, history, return_buffer=True):
65
+ buffer = ""
66
+
67
+ doc_retriever = db.as_retriever(search_type="similarity_score_threshold", search_kwargs={"score_threshold": 0.2})
68
+ retrieved_docs = doc_retriever.invoke(message)
69
+ print(len(retrieved_docs))
70
+ print(retrieved_docs)
71
+
72
+ if len(retrieved_docs) > 0:
73
+ state = {
74
+ 'question': message,
75
+ 'context': retrieved_docs
76
+ }
77
+ for token in conv_chain.stream(state):
78
+ buffer += token
79
+ yield buffer
80
+ else:
81
+ passage = "I am sorry. I do not have relevant information to answer the question. Please try another question."
82
+ buffer += passage
83
+ yield buffer if return_buffer else passage
84
+
85
+
86
+ chatbot = gr.Chatbot(value = [[None, initial_msg]])
87
+ iface = gr.ChatInterface(chat_gen, chatbot=chatbot).queue()
88
+ iface.launch()